专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
用于在燃料电池应用中由柴油加工产生富甲烷气的基于Ni/CGO和Ni-Ru/CGO的预重整催化剂制剂

用于在燃料电池应用中由柴油加工产生富甲烷气的基于Ni/CGO和Ni-Ru/CGO的预重整催化剂制剂

IPC分类号 : B01J35/02,B01J37/18,B01J38/06,B01J38/10,B01J23/755,B01J23/83,B01J23/89,H01M4/00

申请号
CN201480029391.8
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2014-05-22
  • 公开号: 105377426B
  • 公开日: 2016-03-02
  • 主分类号: B01J35/02
  • 专利权人: 沙特阿拉伯石油公司 ; 韩国科学技术院

专利摘要

一方面,本发明提供一种用于将柴油型液态烃转化为富甲烷气的催化剂。该催化剂包含镍组分、二氧化铈组分和氧化钆组分。与现有技术的市售催化剂相比,所述催化剂提供高转化率、选择性和稳定性。所述催化剂组合物能够提高用于移动式和固定式燃料电池应用的整体燃料电池效率。

权利要求

1.一种制备用于将柴油型液态烃转化为富甲烷气的催化剂的方法,所述方法包括以下步骤:

向去离子水中加入化学计量的Ce(NO3)3·6H2O、Gd(NO3)3·6H2O和Ni(NO3)3·6H2O以形成溶解溶液;

向所述溶解溶液中加入甘氨酸以形成溶解了甘氨酸的溶液;

加热所述溶解了甘氨酸的溶液使得蒸发余量的水,起始燃烧,并且生成催化剂粉末;以及

在空气中煅烧所述催化剂粉末。

2.权利要求1所述的方法,其中将所述催化剂粉末成形为用于将柴油型液态烃转化为富甲烷气的形式。

3.权利要求2所述的方法,其中所述形式为催化剂球粒。

4.前述权利要求中任一项所述的方法,其中所述溶解了甘氨酸的溶液中的甘氨酸与NO3的摩尔比为约1.5。

5.前述权利要求中任一项所述的方法,其中所述催化剂粉末具有在约10nm至20nm尺寸范围内的颗粒。

6.前述权利要求中任一项所述的方法,其中煅烧所述催化剂粉末的步骤包括:在4小时时间内将温度升高至800℃,然后将温度在800℃下保持4小时。

7.一种活化催化剂的方法,包括以下步骤:

在氢气和氮气的环境中还原催化剂,所述还原在500℃下进行4小时,所述催化剂包含镍组分、二氧化铈组分和氧化钆组分,从而使得所述催化剂能够将柴油型液态烃转化为富甲烷气。

8.权利要求7所述的方法,其中所述氢气占约30重量%。

9.权利要求7或8所述的方法,其中所述氮气占约70重量%。

10.一种使催化剂再生的方法,包括以下步骤:

在催化剂已经用于将柴油型液态烃转化为富甲烷气之后,对所述催化剂进行以下处理,采用水、氢气和氮气在大气压力下处理足够长的时间以除去形成于所述催化剂上的焦炭,所述催化剂包含镍组分、二氧化铈组分和氧化钆组分,从而使得所述催化剂能够将柴油型液态烃转化为富甲烷气。

11.权利要求10所述的方法,其中所述氢气占约30重量%。

12.权利要求10或11所述的方法,其中所述氮气占约45重量%。

13.权利要求10至12中任一项所述的方法,其中所述水占约45重量%。

14.一种使用催化剂1的方法,其中

将柴油型液态烃施用于所述催化剂,从而产生富甲烷气。

15.一种催化剂,包含:

镍组分,

二氧化铈组分,和

氧化钆组分,

所述催化剂能够将柴油型液态烃转化为富甲烷气。

16.权利要求15所述的催化剂,还包含钌。

17.权利要求15和16中任一项所述的催化剂,其中相对于所述催化剂,所述镍组分占20重量%,所述二氧化铈组分占70重量%,所述氧化钆组分占10重量%。

18.权利要求15和16中任一项所述的催化剂,其中所述镍组分占19.5重量%,所述二氧化铈组分占70重量%,所述氧化钆组分占10重量%,所述钌组分占0.5重量%。

19.一种用于将柴油型液态烃转化为富甲烷气的催化剂,所述催化剂包含:

镍组分,

二氧化铈组分,和

氧化钆组分,

所述催化剂抵抗在该催化剂的使用过程中在该催化剂上焦炭的形成,并且能够以90%以上的比率将柴油型液态烃转化为富甲烷气。

说明书

技术领域

一般而言,本发明涉及将柴油型液态烃转化为富甲烷气的新的催化剂制剂,其能带来增加的燃料电池效率。与现有技术的市售催化剂相比,所述催化剂提供高转化率、选择性和稳定性。所述催化剂组合物提高了用于移动式和固定式燃料电池应用的整体燃料电池效率。

背景技术

本发明涉及柴油预重整催化剂,其使用柴油生成用于燃料电池的富甲烷合成气。预重整在比蒸汽转化低得多的温度下部分地完成蒸汽重整反应,并且使用高度活性催化剂。预重整工艺将重质烃转化为富甲烷合成气。催化预重整通常将来自于天然气的原料重整为石脑油。但是,柴油是一种对于燃料电池极具吸引力的烃类燃料。柴油具有高能量密度、构造良好的基础结构和安全的优点。虽然天然气、液化石油气等可通过预重整而相对容易地转化,但是柴油不容易进行预重整。柴油是这样一种液态燃料,其为包含饱和烃、烯烃和芳香烃的复合烃混合物。组分的宽沸程造成混合、蒸发、甲烷生成、催化剂结垢和燃料供给步骤方面的复杂性,而不是与较低重量的烃相反。

固体氧化物燃料电池(“SOFC”)使用甲烷和氢气以及一氧化碳。SOFC系统的复杂性低于其他燃料电池,因为其具有燃料灵活性。SOFC能够内部进行甲烷重整。甲烷的内部重整还能抑制SOFC堆中的温度升高。由SOFC产生的热量累积在SOFC堆中。除非将热量合适地释放,否则上部电池的温度就会升高。这能够导致SOFC的故障以及密封剂和互连材料的失效。甲烷的内部重整是解决热量问题的一种方式,因为甲烷进行重整的反应是吸热的。

柴油预重整一直以来都遭遇焦炭形成和低操作温度下活性降低的问题。柴油重整催化剂由于焦炭的形成而容易失活。这些类型的重质烃比轻质烃更加容易形成焦炭。形成焦炭是这类催化剂失活的主要机制。另外,预重整优选地在比其他重整方法更低的温度下进行操作,以促进甲烷的生成。预重整通常在500℃下操作,因为在此温度范围内有利于甲烷的存在。然而,催化活性通常与操作温度成比例。因此,操作温度越低,催化剂的活性越低。有利的是开发一种对焦炭形成具有高耐性且在500℃下具有高活性的催化剂作为柴油预重整催化剂。

市售催化剂可用于石脑油预重整工艺。但是,当用于柴油预重整工艺中时,这类市售催化剂不是非常有用或有效。柴油比石脑油更容易形成焦炭。因此,在柴油预重整条件下,催化剂活性迅速降低。

需要开发用于柴油预重整工艺的催化剂。在预重整工艺中,在供入SOFC系统之前将柴油预重整为合成气。预重整在无需氧气供给和低于500℃下进行操作。因此,预重整比其他重整方法具有更高的效率。但是,由于柴油的特性和低操作温度,柴油预重整要求高度活性的催化剂。目前的市售催化剂都不能用于柴油预重整。因此,市售催化剂都不能用于将柴油型液态烃加工成为能够提供高燃料转化率、选择性和稳定性的富甲烷气。

发明内容

一般而言,本发明涉及将柴油型液态烃转化为富甲烷气的新的催化剂制剂,其能带来增加的燃料电池效率。与现有技术的市售催化剂相比,所述催化剂提供高转化率、选择性和稳定性。所述催化剂能够提高用于移动式和固定式燃料电池应用的整体燃料电池效率。

一方面,本发明提供一种用于将柴油型液态烃转化为富甲烷气的催化剂。所述催化剂包含镍组分、二氧化铈组分和氧化钆组分。所述催化剂能够将柴油型液态烃转化为富甲烷气。

另一方面,本发明提供一种用于将柴油型液态烃转化为富甲烷气的催化剂。所述催化剂包含镍组分、二氧化铈组分和氧化钆组分。所述催化剂能够抵抗在该催化剂的使用过程中在该催化剂上焦炭的形成。

另一方面,本发明提供一种制备用于将柴油型液态烃转化为富甲烷气的催化剂的方法,其采用甘氨酸硝酸盐工艺。所述方法包括,向去离子水中加入化学计量的Ce(NO3)3·6H2O、Gd(NO3)3·6H2O和Ni(NO3)2·6H2O以形成溶解溶液。向所述溶解溶液中加入甘氨酸以形成溶解了甘氨酸的溶液。加热所述溶解了甘氨酸的溶液使得蒸发余量的水,起始燃烧,并且生成催化剂粉末。然后在空气中煅烧所述催化剂粉末。在一个实施方案中,在800℃下进行4小时的煅烧。

另一方面,本发明提供一种活化所述催化剂的方法,所述方法利用氢气和氮气在约500℃下对催化剂进行约4小时的还原,从而活化催化剂。

另一方面,本发明提供一种使所述催化剂再生的方法,所述方法对已经用于将柴油型液态烃转化为富甲烷气的催化剂进行以下处理:采用水、氢气和氮气在大气压力和约500℃下处理足够长的时间,以除去所述催化剂上形成的焦炭。再生工艺的温度取决于焦炭形成的量。在一些实施方案中,在再生工艺过程中,在约500℃下对催化剂进行处理。在进一步的实施方案中,在再生工艺过程中,在约500℃至约800℃下对催化剂进行处理。

另一方面,本发明提供一种使用所述催化剂的方法,其中将柴油型液态烃施用于所述催化剂,从而产生富甲烷气。

本发明对环境具有潜在的积极影响。来自于化石资源的全球二氧化碳排放是显著的。减少全球二氧化碳排放将会减少对气候变化的影响。可预期车载式车辆重整器和SOFC的组合能够显著降低温室气体的排放,因为其增加了效率并且减少了燃料消耗。

附图简要说明

图1示出根据本发明实施方案形成的示例性催化剂颗粒的透射电子显微镜(TEM)图像。

图2示出催化剂制备方法的实施方案的示意性流程图。

图3示出试验装置的示意图。

图4(a)和(b)示出对于催化剂组合物的燃料转化率和甲烷生成率。

图5示出对于催化剂组合物的燃料转化率。

图6(a)和(b)示出对于催化剂组合物的燃料转化率。

图7示出对于不同催化剂组合物的焦炭形成量。

图8示出对于不同催化剂组合物的焦炭形成量。

图9示出与负载镍的几种催化剂相比催化剂的活性。

图10示出镍/CGO催化剂的稳定性试验结果。

图11示出镍/CGO催化剂的稳定性试验结果。

图12示出催化剂组合物的XRD图。

图13示出对于催化剂组合物的燃料转化率。

图14示出催化剂组合物的TPR谱图。

图15示出催化剂组合物的加速降解试验结果。

图16示出催化剂组合物的加速降解试验结果。

图17示出催化剂组合物的加速降解试验结果。

图18示出催化剂组合物的长期稳定性试验结果。

具体实施方式

一般而言,本发明涉及将柴油型液态烃转化为富甲烷气的新的催化剂制剂,其能带来增加的燃料电池效率。与现有技术的市售催化剂相比,所述催化剂提供高转化率、选择性和稳定性。所述催化剂组合物能够提高用于移动式和固定式燃料电池应用的整体燃料电池效率。下文中,将对本发明提出的组合物、制备方法、活化工艺、再生工艺和柴油预重整催化剂的使用进行详细说明。

一方面,本发明提供一种用于将柴油型液态烃转化为富甲烷气的催化剂。柴油型液态烃通常包含重质烃的混合物,重质烃的碳数在12至24的范围内。所述催化剂包含镍组分、二氧化铈组分和氧化钆组分。所述催化剂能够将柴油型液态烃转化为富甲烷气。

另一方面,本发明提供一种用于将柴油型液态烃转化为富甲烷气的催化剂。所述催化剂包含镍组分、二氧化铈组分和氧化钆组分。所述催化剂能够抵抗在催化剂的使用过程中在催化剂上焦炭的形成。

在一些实施方案中,镍组分的存在量为约20重量%,二氧化铈组分的存在量为约70重量%,氧化钆组分的存在量为约10重量%。令人惊奇的是,发现在这类催化剂组合物中存在最佳的镍负载量。已经发现,在催化剂组合物中,20重量%的Ni负载比更高的Ni负载更加有效地抑制有害的焦炭的形成。

在一些实施方案中,催化剂还包含钌。在进一步的实施方案中,当催化剂包含钌时,镍组分的存在量为约19.5重量%,二氧化铈组分的存在量为约70重量%,氧化钆组分的存在量为约10重量%,钌组分的存在量为约0.5重量%。令人惊奇的是,添加少量的钌提高了这类催化剂组合物的稳定性。虽然镍由于其具有高催化活性并且廉价而被广泛用于催化工艺中,但是与如铑、铂和钌之类的贵金属相比,镍更容易形成焦炭。

镍组分为催化剂的活性金属。铈和钆组分(统称为“CGO”或“Gd掺杂的CeO2”)作为催化剂载体。CGO能有效地提高催化剂组合物对焦炭形成的耐性。不希望受理论的束缚,认为CGO能抑制金属上焦炭的形成,因为CGO为离子导电性材料。在一些实施方案中,CGO具有高的离子电导率。因此,在其他优选的实施方案中,所述催化剂能够抵抗在催化剂的使用过程中在催化剂上焦炭的形成。

另一方面,本发明提供一种利用甘氨酸硝酸盐工艺(“GNP”)制备用于将柴油型液态烃转化为富甲烷气的催化剂的方法。所述方法包括:向去离子水中加入化学计量的Ce(NO3)3·6H2O、Gd(NO3)3·6H2O和Ni(NO3)2·6H2O以形成溶解溶液。向所述溶解溶液中加入甘氨酸以形成溶解了甘氨酸的溶液。加热所述溶解了甘氨酸的溶液使得蒸发余量的水,起始燃烧,并且生成催化剂粉末。在空气中在800℃下煅烧所述催化剂粉末4小时。对燃烧后得到的粉末进行煅烧是为了稳定活性金属和形成CGO(Ce0.9Gd0.1O2-x)相。为了有效地抑制焦炭形成,CGO相应当在煅烧过程中形成。

甘氨酸用作甘氨酸硝酸盐工艺中的燃料,燃烧之后,甘氨酸应当被烧尽。因此,甘氨酸的量和纯度相比于其他元素较不重要。但是,在一些实施方案中,对于该工艺使用了摩尔比为1:1.5的硝酸盐:甘氨酸。在一些实施方案中,使用≥99%纯度的甘氨酸。在进一步的实施方案中,溶解了甘氨酸的溶液中甘氨酸与NO3的摩尔比为约1.4。在进一步的实施方案中,溶解了甘氨酸的溶液中甘氨酸与NO3的摩尔比为约1.6。

在一些实施方案中,将催化剂粉末成形为用于将柴油型液态烃转化为富甲烷气的形式。在进一步的实施方案中,所述形式为催化剂球粒。本领域技术人员应当理解催化剂可以成形的各种形式,并且应当理解如何选择最好的形式用于给定的反应器和工艺。在一些实施方案中,使用液压机对催化剂粉末造粒。本领域技术人员应当理解能够用于将催化剂成形的各种其他方法。

在进一步的实施方案中,催化剂粉末具有10nm至20nm尺寸范围内的颗粒。在一些实施方案中,颗粒为尺寸在该范围内的组合。在其他实施方案中,颗粒形成大的簇。该大的簇示于图1中,其为示例性制备的催化剂的TEM(透射电子显微镜)图像。

在一些实施方案中,煅烧催化剂粉末的步骤包括在约4小时的时间内将温度升高至约800℃,然后将温度在约800℃下保持约4小时。图2为示例性示意流程图,其示出根据本发明某些实施方案的催化剂组合物的制备方法。

另一方面,本发明提供一种通过在氢气和氮气的环境中还原催化剂来活化所述催化剂的方法。在一个实施方案中,利用氢气和氮气在约500℃下进行约4小时的还原,从而活化催化剂。在一些实施方案中,氢气占约30重量%。在其他实施方案中,氮气占约70重量%。催化剂组合物的预处理或活化是必需的,因为在催化剂组合物的制备过程中镍转化为非活性的氧化镍形式。

另一方面,本发明提供一种使所述催化剂再生的方法,该方法采用水、氢气和氮气在大气压力和约500℃下对已经用于将柴油型液态烃转化为富甲烷气的催化剂处理足够长的时间,以除去形成于催化剂上的焦炭。再生工艺的温度取决于焦炭形成的量。在一些实施方案中,在再生工艺过程中,在约500℃下对催化剂进行处理。在进一步的实施方案中,在再生工艺过程中,在约500℃至约800℃下对催化剂进行处理。通常,可以采用更高的再生温度处理更加严重的焦炭形成。例如,对于严重的焦炭形成,在再生工艺过程中,可以采用800℃的温度。在一些实施方案中,氢气占约30重量%。在一些实施方案中,氮气占约45重量%。在一些实施方案中,水占约45重量%。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约90%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约91%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约92%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约93%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约94%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约95%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约96%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约97%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约98%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约99%的焦炭。在一些实施方案中,再生过程中可除去使用过程中形成于催化剂上的约100%的焦炭。

另一方面,本发明提供一种使用所述催化剂的方法,其中将柴油型液态烃施用于所述催化剂,从而产生富甲烷气。在一些实施方案中,柴油型液态烃以约10%以上的比率转化为富甲烷气。在一些实施方案中,柴油型液态烃以约11%以上的比率转化为富甲烷气。在一些实施方案中,柴油型液态烃以约12%以上的比率转化为富甲烷气。在一些实施方案中,柴油型液态烃以约13%以上的比率转化为富甲烷气。

在优选实施方案中,对于柴油预重整而言,所述催化剂具有高催化活性和稳定性,从而获得了固体氧化物燃料电池(SOFC)系统的高效率和热平衡。

在优选实施方案中,与现有技术的市售催化剂相比,所述催化剂提供了高转化率、选择性和稳定性。在一些实施方案中,所述催化剂组合物能够提高用于移动式和固定式燃料电池应用的整体燃料电池效率。

实施例

对废催化剂进行活性测试和分析以设计和优化催化剂组合物。利用活性测试来比较各种催化剂组合物的活性和稳定性。然后通过程序升温氧化对废催化剂进行分析从而测定焦炭的形成。

按如下方法制备所有实施例的GNP-CGO催化剂制剂。向去离子水中加入Ce(NO3)3·6H2O、Gd(NO3)3·6H2O和Ni(NO3)2·6H2O以形成溶解溶液,从而制备镍/CGO催化剂。各硝酸盐的量按化学计量计算。例如,为了制备10%Ni/CGO催化剂,三种组分的摩尔比为Ce(NO3)3·6H2O:Gd(NO3)3·6H2O:Ni(NO3)2·6H2O=0.9:0.1:0.3290。对于20%Ni/CGO催化剂,将Ni(NO3)2·6H2O的摩尔比变为0.7403,等等。向溶解溶液中加入甘氨酸以形成溶解了甘氨酸的溶液。采用1:1.5的硝酸盐:甘氨酸摩尔比。加热溶解了甘氨酸的溶液从而蒸发余量的水,起始燃烧,并且生成催化剂粉末。大约需要2小时来蒸发余量水,并且自燃在约180℃下开始。在燃烧过程中,内部温度突然升高至1000℃以上。在几分钟内完成燃烧。将催化剂粉末成形为球粒。然后在约4小时内将温度升高至约800℃以在空气中对催化剂粉末进行煅烧,然后将温度在约800℃下保持4小时。煅烧之后,用研钵对煅烧的催化剂进行均匀地研磨,然后再次成形为球粒。用筛子选择粒径为250至500μm的催化剂颗粒。

利用与GNP-CGO催化剂制剂类似的方法制备镍/铑/CGO催化剂、镍/铂/CGO催化剂、钌/CGO催化剂、铑/CGO催化剂、铂/CGO催化剂和镍/钌/CGO催化剂。例如,通过以下方法制备镍/钌/CGO催化剂,向去离子水中加入Ce(NO3)3·6H2O、Gd(NO3)3·6H2O、Ni(NO3)2·6H2O和Ru(NO)(NO3)3以形成溶解溶液。各硝酸盐的量按化学计量计算。例如,为了制备19.5%Ni-0.5%Ru/CGO催化剂,四种组分的摩尔比为Ce(NO3)3·6H2O:Gd(NO3)3·6H2O:Ni(NO3)2·6H2O:Ru(NO)(NO3)3=0.9:0.1:0.7218:0.01075。向溶解溶液中加入甘氨酸以形成溶解了甘氨酸的溶液。采用1:1.5的硝酸盐:甘氨酸摩尔比。将溶解了甘氨酸的溶液加热约2小时从而蒸发余量的水,并在约180℃下开始自燃。在燃烧过程中,内部温度突然升高至1000℃以上。在几分钟内完成燃烧并形成了催化剂粉末。将催化剂粉末成形为球粒,然后在约4小时内将温度升高至800℃以在空气中进行煅烧,然后将温度在约800℃下保持4小时。煅烧之后,用研钵对煅烧的催化剂进行均匀地研磨,然后再次成形为球粒。用筛子选择粒径为250至500μm的催化剂颗粒。

始润浸渍法(IWI)镍/CGO催化剂按如下制备。将来自于PRAXAIR的钆掺杂的二氧化铈(CGO)在130℃下干燥4小时。对干燥的CGO称重,并使去离子水吸收到干燥的CGO内。吸收之后,再次对CGO称重,以计算由CGO的多孔结构吸收的水的比例。采用化学计量的镍组分来制备硝酸镍溶液,使该溶液吸收入干燥的CGO中。然后,将含镍的CGO催化剂在120℃下干燥4小时,然后在约4小时内将温度升高至600℃以在空气中进行煅烧,之后将温度在约600℃下保持4小时。煅烧之后,用研钵对煅烧的催化剂均匀地研磨,然后再次成形为球粒。用筛子选择粒径为250至500μm的催化剂颗粒。

用于催化活性测试的试验装置的示意图示于图3中。通过超声波注射器将燃料雾化以用于输送。反应器由放置于电炉内部的12.7mm不锈钢管构成。利用PID温度控制器来控制反应器,并通过放置于催化床底部的热电偶进行监测。用高效液相色谱(HPLC)泵(MOLEH有限公司)来供应燃料和去离子水(>15MΩ)。将水供应到蒸汽发生器中。将少量的氮气也供应至蒸汽发生器和超声波注射器中,从而获得稳定的反应物输送。氮气的总流量为120ml/分钟,对于蒸汽发生器为20ml/分钟,对于超声波喷嘴为100ml/分钟。采用质量流量控制器(MKS有限公司)来计量空气和氮气。使用配置有热传导检测器(TCD)和火焰离子化检测器(FID)的气相色谱仪来分析柴油重整产物的组成。应当指出,在分析柴油重整产物的组成之前,通过脱水器除去水组分。另外,用加热带将设备的气体管道的温度保持在150℃以上。

实施例1

使用单金属和双金属催化剂进行预重整。实例研究结果如下:

1)单金属催化剂

单金属催化剂中,在500℃下钌/CGO表现出最高的催化活性。单金属催化剂的预重整结果示于图4(a)和4(b)中。在该系列试验中使用了来自于Sigma-Aldrich公司的纯度≥99%的无水正十二烷。在O2/C比为0.3、H2O/C比为3.0且GHSV为5,000/小时下进行正十二烷的预重整。钌/CGO表现出100%的燃料转化率和8.0摩尔%的甲烷生成率。但是,当使用市售柴油进行预重整时,Ru/CGO表现出快速的劣化。Ru/CGO的市售柴油预重整的燃料转化率示于图5中。对于Ru/CGO,当使用市售柴油时,少于60%的燃料被转化为合成气。

2)双金属催化剂

在双金属催化剂上没有观察到催化活性的提升。双金属催化剂的燃料转化率和甲烷生成率示于图6(a)和6(b)中。在这些试验中,使用了正十二烷。在O2/C比为0.3、H2O/C比为3.0且GHSV为5,000/小时下进行预重整。

实施例2

在重整反应中,CGO的氧化还原循环将来自水和一氧化碳的氧转化为氧离子。氧离子通过CGO的氧空位而扩散到金属颗粒中。扩散到金属颗粒中的氧离子与形成于镍上的焦炭发生反应。进行测试以分析CGO催化剂上的焦炭形成,并与市售催化剂进行比较。由Sigma-Aldrich获得Al2O3。图7示出重整试验之后CGO催化剂和Al2O3的焦炭形成量。图7示出老化的CGO-M1&M4(M1为铂,M4为镍)和老化的CGO-M1(M1为镍)。Al2O3被广泛用于催化剂载体,但其为非离子导电材料。如图7所示,与基于CGO的催化剂组合物相比,Al2O3上焦炭的形成更加明显。在这些试验中,使用了合成柴油。合成柴油为正十二烷(70体积%,纯度≥99%,Sigma-Aldrich)和1-甲基萘(30体积%,纯度≥99%,Sigma-Aldrich)的组合物。在O2/C比为0.5、H2O/C比为1.25且GHSV为5,000/小时下进行预重整。

实施例3

通常,焦炭的形成是镍基催化剂组合物的缺陷。镍比其他贵金属催化剂更容易形成焦炭。本发明中,通过使用CGO作为载体能够减轻镍基催化剂上形成焦炭的问题。

图8示出对于各种镍重量百分比的催化剂组合物,在10小时的柴油预重整之后焦炭的形成量。使用来自于韩国GS-Caltex的市售柴油用于预重整试验。市售柴油包含含硫化合物和芳香烃。在H2O/C比为2.0、GHSV为5,000/小时且温度为500℃下进行预重整。如图8所示,含20%镍的催化剂经历最少量的焦炭形成。通常,当焦炭的燃烧温度高时,焦炭难以通过再生过程而除去,因为燃烧温度与焦炭的键能相关。关于此,只有Ni负载为20重量%的催化剂组合物显示出在400℃下没有焦炭燃烧。

实施例4

催化剂的活性和稳定性取决于金属的负载。需要一定量的金属负载以获得足以用于柴油预重整的催化活性。图9示出各种镍负载的催化剂组合物的市售柴油预重整结果。在H2O/C比为2.0、GHSV为5,000/h且温度为500℃下进行预重整。如图9所示,当用Ni/CGO(10重量%)进行柴油预重整时,燃料转化率下降。当镍负载高于20重量%时,燃料转化率大幅度提升。但是,太高的金属负载会降低金属的分散和与载体的相互作用,从而影响CGO在抑制焦炭形成中的作用。

实施例5

图10示出含有0.5重量%的多种贵金属(包括钌、铑和铂)的催化剂组合物的稳定性。图10示出所述催化剂的10小时市售柴油预重整的结果。在H2O/C比为2.0、GHSV为5,000/h且温度为500℃下进行预重整。如图10所示,用铑或铂替换0.5重量%的镍之后,催化剂组合物的稳定性没有提高。但是,当用钌替换0.5重量%的镍之后,催化剂组合物的稳定性得到提高。

虽然钌能有效地提高Ni/CGO的稳定性,但是对于替换量而言,0.5重量%为最佳量。图11为示出最佳替换量为0.5重量%的稳定性试验结果。图11示出所述催化剂的10小时市售柴油预重整的结果。在H2O/C比为2.0、GHSV为5,000/h且温度为500℃下进行预重整。当替换量大于0.5重量%时,稳定性没有得到提高。

实施例6

图12示出镍/CGO-CNP催化剂、CGO-GNP催化剂和市售CGO的XRDX射线衍射(XRD)图。当根据上述催化剂的制备方法由GNP制备CGO时,XRD图与市售CGO一致。这表明,煅烧工艺适于形成CGO相。因此,对于镍/CGO-CNP催化剂,表现出CGO峰,并且另外的峰与氧化镍的峰相同。

实施例7

图13示出用通过GNP和始润浸渍法(IWI)制备的Ni/CGO(20.0重量%)进行市售柴油预重整的结果。在H2O/C比为3.0、GHSV为5,000/h且温度为500℃下进行预重整。燃料转化率为产物中碳的数目与供料燃料中碳的数目的百分比。如图13所示,对于两种催化剂,在最初4小时内市售柴油都完全转化。通过IWI制备的Ni/CGO(20.0重量%)在4小时后劣化,并且只有50%的市售柴油在试验结束时被转化。通过GNP制备的Ni/CGO(20.0重量%)即使在经过10小时之后也能将市售柴油完全转化。

图14示出通过GNP和IWI制备的Ni/CGO(20.0重量%)的程序升温还原(TPR)。GNP降低了CGO的还原温度。当通过GNP制备Ni/CGO(20.0重量%)时,CGO在约500℃下还原。CGO的还原对于抑制焦炭形成的离子传导起到重要的作用。因此本发明的制备方法能够通过增强CGO的还原来提高催化剂组合物的稳定性。

实施例8

通过实例研究对Ni/CGO基催化剂进行优化。研究了镍负载和贵金属对各种催化剂组合物的影响。在H2O/C比为2.0、GHSV为5,000/h且温度为500℃下进行市售柴油的预重整。采用低的H2O/C(2.0)以加速劣化。镍负载的优化结果示于图15中。虽然20重量%、40重量%和60重量%的镍具有相似的稳定性,但是20重量%表现出比60重量%低的焦炭形成。另一方面,如图16所示,向Ni/CGO中添加钌提高了稳定性。钌的最佳量为0.5重量%。钌加入量超过0.5重量%会降低Ni/CGO的稳定性,如图17所示。对优化的含0.5重量%钌的Ni/CGO催化剂的长期稳定性进行了测试。对于长期稳定性测试,采用该优化催化剂在H2O/C为3.0、GHSV为5,000/h且500℃下对正十二烷燃料进行预重整。常规地得到气相色谱(GC)结果,并由GC数据计算出各所得气体组分的摩尔比以及燃料转化率。优化的催化剂能够稳定工作200小时,如图18所示。

实施例9

通过由市售柴油燃料得到的富甲烷气的量对Ni/CGO基催化剂的活性进行稳定的监测。用20%镍/CGO催化剂在H2O/C为3.0、GHSV为5,000/h及500℃下对市售柴油燃料进行预重整。甲烷气的收率约为13%富甲烷气(不含H2O和N2)。

用于在燃料电池应用中由柴油加工产生富甲烷气的基于Ni/CGO和Ni-Ru/CGO的预重整催化剂制剂专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部