专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用

一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用

IPC分类号 : C08G65/333,C08G65/332,C07D519/00,C09K11/06,G01N21/31,G01N21/33,G01N21/64,G01N21/78

申请号
CN202011071062.3
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2020-10-09
  • 公开号: 112159522B
  • 公开日: 2021-01-01
  • 主分类号: C08G65/333
  • 专利权人: 山东大学

专利摘要

本发明提供一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用。本发明探针的制备方法包括步骤:罗丹明6G和水合联氨经反应制备得到罗丹明6G酰肼;聚乙二醇与4‑醛基苯甲酸经反应制备得到苯甲醛端基化的聚乙二醇;罗丹明6G酰肼与苯甲醛端基化的聚乙二醇经反应制备得到水溶性罗丹明基荧光/比色双模式探针。本发明所得双模式探针具有良好的水溶性和生物相容性、安全性,可用于生物荧光成像或疾病诊断领域;用于检测三价铁离子,样品制备简单,能通过荧光发射和肉眼观察,并显示出高的选择性、灵敏度和抗干扰能力,且pH适用范围广泛。

权利要求

1.一种水溶性罗丹明基荧光/比色双模式探针的制备方法,所述水溶性罗丹明基荧光/比色双模式探针,具有如下式I所示结构,

其中,式I中,n为4-500;

制备方法包括步骤:

(1)于溶剂A中,罗丹明6G和水合联氨经反应制备得到罗丹明6G酰肼;

(2)于溶剂B中,在催化剂1作用下,聚乙二醇与4-醛基苯甲酸经反应制备得到苯甲醛端基化的聚乙二醇;

(3)于溶剂C中,罗丹明6G酰肼与苯甲醛端基化的聚乙二醇经反应制备得到水溶性罗丹明基荧光/比色双模式探针。

2.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,所述探针的数均分子量为1200-22000。

3.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(1)中,包括以下条件中的一项或多项:

i、所述溶剂A为甲醇或乙醇;所述罗丹明6G的质量和溶剂A的体积比为0.01-0.1g/mL;

ii、所述罗丹明6G和水合联氨的摩尔比为1:5-1:60;

iii、所述水合联氨是使用质量浓度为40-90%的水合联氨水溶液。

4.根据权利要求3所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,所述罗丹明6G和水合联氨的摩尔比为1:20-1:55。

5.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(1)中,包括以下条件中的一项或多项:

i、所述反应温度为30-80℃;反应时间为2-24小时;

ii、所述水合联氨是以滴加的方式加入体系中。

6.根据权利要求5所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,所述反应温度为70-80℃;反应时间为10-20h。

7.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(2)中,包括以下条件中的一项或多项:

i、所述溶剂B为甲醇、乙醇、丙酮或四氢呋喃;所述4-醛基苯甲酸的质量和溶剂B 的体积比为0.01-0.1g/mL;

ii、所述催化剂1为二环己基二亚胺和4-二甲胺基吡啶的组合,二环己基二亚胺和4-二甲胺基吡啶的质量比为1:15-20,所述催化剂1的质量是4-醛基苯甲酸质量的1-3倍;

iii、所述聚乙二醇和4-醛基苯甲酸的摩尔比为1:2-1:5;

iv、所述聚乙二醇的数均分子量为200-20 000;

v、所述反应温度为15-50℃;反应时间为4-36小时;

vi、所述反应是于惰性气氛保护下进行的。

8.根据权利要求7所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(2)中,包括以下条件中的一项或多项:

i、所述聚乙二醇的数均分子量为2000-4000;

ii、反应时间为20-30h。

9.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(3)中,包括以下条件中的一项或多项:

i、所述溶剂C为甲醇、乙醇或丙酮;所述罗丹明6G酰肼的质量和溶剂C的体积比为0.001-0.01g/mL;

ii、罗丹明6G酰肼与苯甲醛端基化的聚乙二醇的反应还可在催化剂2的作用下进行;所述催化剂2是硼酸、苯磺酸或冰乙酸;

iii、所述罗丹明6G酰肼与苯甲醛端基化的聚乙二醇的质量比为1:5-12。

10.根据权利要求9所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,所述催化剂2为冰乙酸;所述催化剂2的质量是罗丹明6G酰肼质量的0.2-5倍。

11.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,步骤(3)中,包括以下条件中的一项或多项:

i、所述反应温度为30-58℃;反应时间为2-48小时;

ii、所述罗丹明6G酰肼以滴加的方式加入体系中。

12.根据权利要求11所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,所述反应温度为55-58℃;反应时间为2-8h。

13.根据权利要求1所述水溶性罗丹明基荧光/比色双模式探针的制备方法,其特征在于,中间产物以及目标产物的后处理步骤如下:

i、罗丹明6G和水合联氨经反应所得反应液的后处理步骤如下:反应液经过滤得固体中间产物,使用乙醇和乙醚的混合溶剂洗涤所得固体中间产物,然后经真空干燥得到罗丹明6G酰肼;

ii、聚乙二醇与4-醛基苯甲酸经反应所得反应液的后处理步骤如下:反应液经过滤除去沉淀,经旋蒸得到固体中间产物,使用二氯甲烷洗涤,然后经干燥得到苯甲醛端基化的聚乙二醇;

iii、罗丹明6G酰肼与苯甲醛端基化的聚乙二醇反应所的反应液的后处理步骤如下:反应液经过滤除去沉淀,经旋蒸、真空干燥得到水溶性罗丹明基荧光/比色双模式探针。

说明书

技术领域

本发明涉及一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用,属于有机合成和光谱检测技术领域。

背景技术

铁元素是人体或动物体中含量最高的过渡金属元素,在生物体的新陈代谢中起到至关重要的作用。生物体缺铁,会导致含铁蛋白的降低,引发贫血、癌症或其它疾病;铁过量则会干扰生物体对其它营养物质的吸收,造成生物器官损伤,例如引发阿兹海默症,肝硬化,甚至是死亡。因此,如何对生活用水或生物体中铁元素的含量进行精确测定,在医药和健康领域具有重要的意义。

目前常用的铁离子分析检测手段主要包括原子吸收光谱,电感耦合等离子体质谱,表面增强拉曼等技术。但这些技术均需要借助昂贵的仪器,仪器操作过程复杂,且耗时长。近年来发展的分子探针技术,主要借助探针与目标物结合后吸收光谱或荧光光谱的变化对目标成分进行定量分析,具有检测迅速、成本低、操作简单的特点,可以实现对金属离子的实时高效检测,受到人们的广泛关注。

罗丹明类染料分子由于具有优异的光化学性质,被广泛用于合成光化学材料。但由改性罗丹明分子构成的分子探针通常水溶性较差,在使用时必须借助有机试剂进行溶解,样品制备过程繁琐,在水溶液样品中的检测受到极大限制。如,中国专利文献CN109438458A公开了一种罗丹明6G荧光探针及其制备方法,将罗丹明6G与乙二胺反应生成中间体LDMO,然后中间体LDMO与邻香兰素反应,经重结晶得到罗丹明6G荧光探针。该发明合成的荧光探针能够对Fe3+进行裸眼检测,无需借助任何设备,但该探针同样存在水溶性较差的问题,在使用时必须借助有机试剂进行溶解,样品制备过程繁琐,在水溶液样品中的检测受到极大限制;另外,该罗丹明6G探针的生物毒性未知,不能用于生物样品检测,且没有准确的pH适用范围。

发明内容

针对现有技术存在的不足,本发明提供一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用。本发明所得双模式探针具有良好的水溶性和生物相容性、安全性,可用于生物荧光成像或疾病诊断领域;用于检测三价铁离子,样品制备简单,能通过荧光发射和肉眼观察,并显示出高的选择性、灵敏度和抗干扰能力,且pH适用范围广泛。

本发明的技术方案如下:

一种水溶性罗丹明基荧光/比色双模式探针,具有如下式I所示结构,

其中,式I中,n为4-500。

根据本发明优选的,所述探针的数均分子量为1200-22000。

上述水溶性罗丹明基荧光/比色双模式探针的制备方法,包括步骤:

(1)于溶剂A中,罗丹明6G和水合联氨经反应制备得到罗丹明6G酰肼;

(2)于溶剂B中,在催化剂1作用下,聚乙二醇与4-醛基苯甲酸经反应制备得到苯甲醛端基化的聚乙二醇;

(3)于溶剂C中,罗丹明6G酰肼与苯甲醛端基化的聚乙二醇经反应制备得到水溶性罗丹明基荧光/比色双模式探针。

根据本发明优选的,步骤(1)中,所述溶剂A为甲醇或乙醇;优选的,所述溶剂A为乙醇;所述罗丹明6G的质量和溶剂A的体积与比为0.01-0.1g/mL。

根据本发明优选的,步骤(1)中,所述罗丹明6G和水合联氨的摩尔比为1:5-1:60;优选的,所述罗丹明6G和水合联氨的摩尔比为1:20-1:55。

根据本发明优选的,步骤(1)中,所述水合联氨是使用质量浓度为40-90%的水合联氨水溶液。

根据本发明优选的,步骤(1)中,所述反应温度为30-80℃;优选的,所述反应温度为70-80℃。反应时间为2-24小时,优选为10-20h。

根据本发明优选的,步骤(1)中,所述水合联氨是以滴加的方式加入体系中。

根据本发明优选的,步骤(2)中,所述溶剂B为甲醇、乙醇、丙酮或四氢呋喃;优选的,所述溶剂B为四氢呋喃;所述4-醛基苯甲酸的质量和溶剂B的体积比为0.01-0.1g/mL。

根据本发明优选的,步骤(2)中,所述催化剂1为二环己基二亚胺和4-二甲胺基吡啶的组合,二环己基二亚胺和4-二甲胺基吡啶的质量比为1:15-20,所述催化剂1的质量是4-醛基苯甲酸质量的1-3倍。

根据本发明优选的,步骤(2)中,所述聚乙二醇和4-醛基苯甲酸的摩尔比为1:2-1:5。

根据本发明优选的,步骤(2)中,所述聚乙二醇的数均分子量为200-20 000;优选的,所述聚乙二醇的数均分子量为2000-4000。

根据本发明优选的,步骤(2)中,所述反应温度为15-50℃。反应时间为4-36小时;优选的,反应时间为20-30h。

根据本发明优选的,步骤(2)中,所述反应是于惰性气氛保护下进行的。

根据本发明优选的,步骤(3)中,所述溶剂C为甲醇、乙醇或丙酮;优选的,所述溶剂C为丙酮;所述罗丹明6G酰肼的质量和溶剂C的体积比为0.001-0.01g/mL。

根据本发明优选的,步骤(3)中,罗丹明6G酰肼与苯甲醛端基化的聚乙二醇的反应还可在催化剂2的作用下进行;所述催化剂2是硼酸、苯磺酸或冰乙酸;优选的,所述催化剂2为冰乙酸;所述催化剂2的质量是罗丹明6G酰肼质量的0.2-5倍。

根据本发明优选的,步骤(3)中,所述罗丹明6G酰肼与苯甲醛端基化的聚乙二醇的质量比为1:5-12。

根据本发明优选的,步骤(3)中,所述反应温度为30-58℃;优选的,所述反应温度为55-58℃。反应时间为2-48小时,优选为2-8h。

根据本发明优选的,步骤(3)中,所述罗丹明6G酰肼以滴加的方式加入体系中。

根据本发明,水溶性罗丹明基荧光/比色双模式探针的制备方法中,中间产物以及目标产物的后处理步骤可按现有技术,本发明优选后处理步骤如下:

i、罗丹明6G和水合联氨经反应所得反应液的后处理步骤如下:反应液经过滤得固体中间产物,使用乙醇和乙醚的混合溶剂洗涤所得固体中间产物,然后经真空干燥得到罗丹明6G酰肼;

ii、聚乙二醇与4-醛基苯甲酸经反应所得反应液的后处理步骤如下:反应液经过滤除去沉淀,经旋蒸得到固体中间产物,使用二氯甲烷洗涤,然后经干燥得到苯甲醛端基化的聚乙二醇。

iii、罗丹明6G酰肼与苯甲醛端基化的聚乙二醇反应所的反应液的后处理步骤如下:反应液经过滤除去沉淀,经旋蒸、真空干燥得到水溶性罗丹明基荧光/比色双模式探针。

上述水溶性罗丹明基荧光/比色双模式探针的应用,应用于铁离子的检测以及活细胞的荧光成像。

本发明探针的反应路线如下:

本发明的技术特点及有益效果:

(1)本发明含有PEG链段的、特定分子结构的罗丹明基荧光/比色双模式探针具有良好的水溶性和生物相容性、安全性。即便在高浓度探针存在时,细胞仍显示较高的存活率,因此能够应用于生物荧光成像或疾病诊断领域。本发明探针在进行检测铁离子时,由于具有较好的水溶性,无需借助有机试剂进行溶解,使得检测样品的制备过程简化。

(2)本发明特定分子结构的探针应用于检测铁离子,显现出高的检测灵敏度、选择性和抗干扰能力。本发明探针对铁离子同时显示荧光和比色响应,自由态的探针分子水溶液是无色无荧光的,当本发明探针应用于检测铁离子时,探针分子水溶液颜色由无色变为红色,发生明显的荧光发射增强,能够通过荧光发射和肉眼进行观察,避免了昂贵仪器的使用,操作过程简单,且耗时短,便于在实际生产和生活中的应用。本发明特定结构的探针在广泛pH范围内均能实现铁离子的检测,从而在检测铁离子时不需要加入缓冲溶液来维持体系的pH值,可以用于极端酸碱环境下的测试,具有较高的实际应用价值。

(3)本发明中罗丹明基双模式探针的制备主要是基于罗丹明6G酰肼和苯甲醛端基化聚乙二醇之间的席夫碱反应,二者之间的摩尔比需要大于等于2:1,才可以制备出两端均连接有罗丹明基团的探针分子;如将二者投料比设定为1:1,则得到一端有罗丹明基团的探针分子,并且该探针对铁离子的选择性和检测抗干扰能力均低于本发明探针。罗丹明6G酰肼及其大部分衍生物均不溶于水,本发明主要借助聚乙二醇分子链提高了探针分子的水溶性。基于罗丹明6G酰肼中的五元螺环结构上的N、O原子和聚乙二醇化合物中苯甲醛O原子的结合作用,使得探针分子对铁离子显示出特异选择性。本发明探针分子的结构作为一个整体,基团之间相互作用使得本发明探针表现出上述优异的效果。

附图说明

图1(a)为探针在不同金属离子溶液中的荧光发射光谱,图1(b)为探针在不同金属离子溶液中的紫外-可见吸收光谱,插图是加入Fe3+前(左)后(右)探针溶液的颜色变化对比图;

图2为不同pH条件下,探针分子在加入Fe3+前后的紫外-可见吸收光谱;

图3为人体宫颈癌细胞在不同浓度探针溶液中培养24h后的细胞存活率。

图4为人体宫颈癌细胞在0.1mg/mL探针溶液中培养30min后,加入不同浓度Fe3+后的荧光共聚焦照片。

具体实施方式

下面结合具体实施例对本发明做进一步的说明,但不限于此。

同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。

实施例1

一种水溶性罗丹明基荧光/比色双模式探针的制备方法,包括步骤:

将0.958g罗丹明6G溶于30mL乙醇中,室温下逐滴滴入3.0g水合肼的水溶液(质量浓度为85%),10min滴加完毕,然后提高体系温度在78℃,搅拌回流12h,停止加热冷却至室温,过滤得固体中间产物,使用乙醇/乙醚(体积比1:1)洗涤固体中间产物,在真空干燥器中干燥,得到罗丹明6G酰肼;

将8g聚乙二醇4000与0.9g 4-醛基苯甲酸溶解在50mL四氢呋喃中,在氮气气氛下,0.09g二环己基二亚胺和1.64g 4-二甲胺基吡啶催化剂作用下,室温反应24h,所得反应液过滤除去沉淀,所得滤液旋蒸得到固体中间产物,使用二氯甲烷洗涤,经干燥得到苯甲醛端基化的聚乙二醇;

将0.1g罗丹明6G酰肼溶解于30mL丙酮溶液中得到混合液1;将1.05g苯甲醛端基化的聚乙二醇溶于30mL丙酮中得到混合液2;在室温下,将混合液1逐滴滴到混合液2中,0.5h滴加结束后,55℃下加热反应5h,冷却后过滤,将滤液旋蒸,所得产物经真空干燥即得水溶性罗丹明基荧光/比色双模式探针。

所得产物的核磁数据如下:

1H NMR(400MHz,DMSO-d6,δ):1.20(t,J=7.2Hz,12H),1.85(s,12H),3.06–3.17(m,8H),3.40-3.80(m,360H),4.40-4.46(m,4H),5.01(t,J=5.2Hz,4H),6.16(s,4H),6.21(s,4H),6.94–6.99(m,2H),7.48–7.53(m,4H),7.76–7.81(m,2H),8.06(d,J=8.4Hz,4H),8.16(d,J=8.4Hz,4H),10.12(s,2H)。

实施例2

一种水溶性罗丹明基荧光/比色双模式探针的制备方法,包括步骤:

将0.958g罗丹明6G溶于30mL乙醇中,室温下逐滴滴入3.0g水合肼的水溶液(质量浓度为85%),10min滴加完毕,然后提高体系温度在78℃,搅拌回流12h,停止加热冷却至室温,过滤得固体中间产物,使用乙醇/乙醚(体积比1:1)洗涤固体中间产物,在真空干燥器中干燥,得到罗丹明6G酰肼;

将4g聚乙二醇2000与0.9g 4-醛基苯甲酸溶解在50mL四氢呋喃中,在氮气气氛下,0.09g二环己基二亚胺和1.64g 4-二甲胺基吡啶催化剂作用下,室温反应24h,所得反应液过滤除去沉淀,所得滤液旋蒸得到固体中间产物,使用二氯甲烷洗涤,经干燥得到苯甲醛端基化的聚乙二醇;

将0.1g罗丹明6G酰肼溶解于30mL丙酮溶液中得到混合液1;将0.53g苯甲醛端基化的聚乙二醇溶于30mL丙酮中得到混合液2;在室温下,将混合液1逐滴滴到混合液2中,0.5h滴加结束后,滴入0.12mL滴冰乙酸,55℃下加热反应5h,冷却后过滤,将滤液旋蒸,所得产物经真空干燥即得水溶性罗丹明基荧光/比色双模式探针。

实施例3

一种水溶性罗丹明基荧光/比色双模式探针的制备方法,包括步骤:

将0.958g罗丹明6G溶于30mL乙醇中,室温下逐滴滴入10.0g水合肼的水溶液(质量浓度为50%),10min滴加完毕,然后提高体系温度在78℃,搅拌回流12h,停止加热冷却至室温,过滤得固体中间产物,使用乙醇/乙醚(体积比1:1)洗涤固体中间产物,在真空干燥器中干燥,得到罗丹明6G酰肼;

将4g聚乙二醇2000与0.9g 4-醛基苯甲酸溶解在50mL四氢呋喃中,在氮气气氛下,0.09g二环己基二亚胺和1.64g 4-二甲胺基吡啶催化剂作用下,室温反应24h,所得反应液过滤除去沉淀,所得滤液旋蒸得到固体中间产物,使用二氯甲烷洗涤,经干燥得到苯甲醛端基化的聚乙二醇;

将0.1g罗丹明6G酰肼溶解于30mL丙酮溶液中得到混合液1;将0.8g苯甲醛端基化的聚乙二醇溶于30mL丙酮中得到混合液2;在室温下,将混合液1逐滴滴到混合液2中,0.5h滴加结束后,30℃下加热反应10h,冷却后过滤,将滤液旋蒸,所得产物经真空干燥即得水溶性罗丹明基荧光/比色双模式探针。

对比例1

一种探针的制备方法,步骤如下:

将0.958g罗丹明6G溶于30mL乙醇中,室温下逐滴滴入3.0g水合肼的水溶液(质量浓度为85%),10min滴加完毕,然后提高体系温度在78℃,搅拌回流12h,停止加热冷却至室温,过滤得固体中间产物,使用乙醇/乙醚(体积比1:1)洗涤固体中间产物,在真空干燥器中干燥,得到罗丹明6G酰肼;

将0.6g罗丹明6G酰肼溶解于40mL无水甲醇得到混合液1;将0.09g间苯二甲醛溶解于10mL无水甲醇中得到混合液2;室温下,将混合液1逐滴滴到混合液2中,滴入0.1mL滴冰乙酸,65℃下加热反应18h,冷却后过滤,收集固体产品,使用乙醚/甲醇(体积比1:1)混合溶剂洗涤,真空干燥得到粉末状间苯二甲醛连接的罗丹明对比探针。

本对比例制备的探针分子不溶于水,必须加入有机溶剂才能溶解,因此本对比例所得探针不能用于水溶液中铁离子的检测;由此证明,本发明聚乙二醇分子链对探针分子水溶性的重要作用。

试验例

探针的性能测试:

1)探针对铁离子的检测选择性。

将本发明实施例1制备的探针溶于水中制备探针储备液(10mg/mL),加入金属离子水溶液(选自K+,Na+,Ag+,Ca2+,Cd2+,Co2+,Cu2+,Mg2+,Mn2+,Ni2+,Zn2+,Cr3+,Al3+中的一种),混合均匀制备样品溶液;样品溶液中探针的最终浓度为0.1mg/mL,金属离子的浓度为100μmol/L。将上述样品溶液进行荧光光谱(图1(a))和紫外-可见吸收光谱(图1(b))测定,所得数据见图1。

由图1可见,只有存在铁离子情况下,荧光强度和紫外强度有显著增强,插入图显示铁离子的存在使探针溶液颜色由无色变为粉红色;说明探针可以通过荧光和紫外吸收光谱双模式检测铁离子,显示出高的选择性,并可肉眼检测。

2)探针在不同pH值下的光谱测试。

将本发明实施例1制备的探针溶于水中制备探针储备液(10mg/mL),将探针储备液加到不同pH值(pH值分别为2,4,6,8,10)的水溶液中,使探针的最终浓度为0.1mg/mL,得到样品溶液;测试样品溶液中加入铁离子溶液(体系中铁离子的最终浓度为10-4mol/L)前后的紫外-可见吸收光谱,记录紫外-可见吸收光谱在253nm处特征峰的强度值在加入铁离子前(I)后(I+Fe3+)的变化,所得数据见图2。

由图2可以看出,本发明探针能用于较宽pH范围的铁离子测试。

3)探针的细胞毒性。

人体宫颈癌(Hela)细胞在高糖DMEM培养液中培养,然后加入不同浓度的探针水溶液,通过MTT方法测试Hela细胞在不同浓度探针(实施例1制备)共培养情况下的存活率。探针浓度分别为0、6.25、12.5、25、50、100、125、250、500μg/mL,测试结果见图3。

由图3可见,细胞存活率均在95%以上,从而证明,探针的细胞毒性很低,可以用于细胞或生物体检测。

4)探针用于活细胞荧光成像。

人体宫颈癌(Hela)细胞在高糖DMEM培养液中培养;37℃下,将宫颈癌(Hela)细胞加入探针(实施例1制备)的水溶液中(探针的浓度为0.1mg/mL)孵育细胞30min,使用PBS缓冲溶液冲洗细胞至少三次,洗掉未被细胞吸收的探针化合物;然后将细胞加入到不同浓度的铁离子水溶液(0、5、20、100μmol/L)中继续孵育30min,PBS缓冲溶液冲洗至少三次,然后进行荧光成像分析。测试激发波长是488nm,收集波长是500-600nm,结果见图4,其中4a,b,c,d是亮场照片,4e,f,g,h是暗场照片,4i,j,k,l是叠加照片。不存在Fe3+(a,e,i)时,Hela细胞形态良好,但几乎没有荧光发射,当加入的Fe3+浓度为5μM(b,f,j)时,Hela细胞显示微弱的绿色荧光,当加入的Fe3+浓度为20μM(i,g,k)和100μM(d,h,l)时,Hela细胞的荧光发射强度进一步提高,并且细胞形态没有明显变化。

由图4可以看出,本发明制备的探针可以用于活细胞内铁离子的检测与成像,随着铁离子含量的升高,细胞的荧光发射增强。另外,本发明探针的使用不会对细胞的生长或增值产生影响。

一种水溶性罗丹明基荧光/比色双模式探针及其制备方法与应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部