专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种连续制备磁场响应性光子晶体纤维的方法

一种连续制备磁场响应性光子晶体纤维的方法

IPC分类号 : D01F1/10,D01F9/00

申请号
CN201711420553.2
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2017-12-25
  • 公开号: 107988657B
  • 公开日: 2018-05-04
  • 主分类号: D01F9/00
  • 专利权人: 东华大学

专利摘要

本发明涉及一种连续制备磁场响应性光子晶体纤维的方法,包括:(1)将Fe3O4@C磁性胶体微球加入到乙氧基化三羟甲基丙烷三丙烯酸酯ETPTA中,超声分散,得均匀分散液与海藻酸钠溶液震荡混合,得到混合液;(2)将混合液与氯化钙溶液分别从两个注入口注入微流反应器,调控注入速率,连续制备磁场响应性光子晶体纤维。该纤维能够在不使用外界设备提供能源的前提下实现对外界磁场的检测,其在智能检测纤维材料的制备领域具有重要的应用价值。

权利要求

1.一种连续制备磁场响应性光子晶体纤维的方法,包括:

(1)将Fe3O4@C磁性胶体微球加入到乙氧基化三羟甲基丙烷三丙烯酸酯ETPTA中,超声分散,得均匀分散液与海藻酸钠溶液震荡混合,得到混合液;其中Fe3O4@C与ETPTA的用量比为0.2~0.5g:10~20mL;分散液与海藻酸钠溶液的体积比为1:5~1:10;

(2)将步骤(1)得到的混合液与氯化钙溶液分别从两个注入口注入微流反应器,调控注入速率,连续制备磁场响应性光子晶体纤维。

2.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(1)中的Fe3O4@C磁性胶体微球是通过水热法制得。

3.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(1)中超声分散的时间为2~5h。

4.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(1)中的海藻酸钠溶液的浓度为2~4%。

5.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(2)中的氯化钙溶液的浓度为3~6%。

6.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(2)中的微流反应器是通过采用两种内径比为5:1的玻璃毛细管,将细玻璃毛细管以共轴的方式放入到粗玻璃毛细管内部,然后用两个底端分别刻有凹槽的注射器针头和环氧树脂分别对细玻璃毛细管的一端以及两个玻璃毛细管的交界处进行密封制得。

7.根据权利要求6所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述细玻璃毛细管的直径为200~400μm,粗玻璃毛细管的直径为1000~2000μm。

8.根据权利要求6所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述细玻璃毛细管在粗毛细管中的长度为3~5cm。

9.根据权利要求1所述的一种连续制备磁场响应性光子晶体纤维的方法,其特征在于:所述步骤(2)中混合液与氯化钙溶液的注入速率比为1:1,注入速率为60~120μL/min。

说明书

技术领域

本发明属于智能纤维材料技术领域,特别涉及一种连续制备磁场响应性光子晶体纤维的方法。

背景技术

随着智能服装的发展,对具有响应性结构色纤维的需求逐渐增大,许多新工艺、新手段逐渐被应用在结构色纤维制备领域。然而,响应性结构色纤维的制备始终面临着两个难题:一是纤维基体上周期性结构的构筑;另一个是结构色纤维的连续化制备。纤维上周期性结构构筑的完整与否,直接影响到纤维的显色性能,而结构色纤维能否实现连续化制备,将直接决定着纤维在实际生产中的应用。众所周知,光子晶体在构筑过程中往往伴随着大量缺陷的产生,结构色纤维上光子晶体的构筑也不例外。由于纤维表面构筑的光子晶体结构中存在大量缺陷,使得纤维的显色并不十分均匀;而对结构色纤维的连续制备方面的研究则更加匮乏,其主要问题是纤维上周期性结构形成过程耗费时间,并且其构筑方法不适用于连续化制备。

微流体技术作为一种新兴的技术,在纳米材料的合成,分子检测以及生物芯片等领域获得了长足的发展。微流体技术具有样品需求少、合成速度快、可操控性强和易于批量生产等特点,因此,在结构色材料的合成领域,微流体技术被广泛应用于各种光子晶体微球的合成以及微通道内光子晶体结构的构筑。除此之外,利用微流体技术也可以实现纤维的制备,目前已经有许多关于基于微流体技术制备各种形貌的纤维的研究,但是这些纤维主要用于生物细胞的培养,并且利用微流体控制纤维的形貌还停留在宏观尺寸方面,很难实现对纤维微观尺度的控制,其主要问题受限于制备材料的选择。

发明内容

本发明所要解决的技术问题是提供一种连续制备磁场响应性光子晶体纤维的方法,利用微流体技术在材料合成中形貌可控的优点,采用不同直径的玻璃毛细管构建了微流器件,然后通过控制前驱体分散液的浓度、流速和温度等因素,在微流体通道中实现了对外界磁场具有响应性的纤维的连续性制备。该方法简单实用,对智能检测纤维的制备具有重要的价值。

本发明的一种连续制备磁场响应性光子晶体纤维的方法,包括:

(1)将Fe3O4@C磁性胶体微球加入到乙氧基化三羟甲基丙烷三丙烯酸酯ETPTA中,超声分散,得均匀分散液与海藻酸钠溶液震荡混合,得到混合液;其中Fe3O4@C与ETPTA的用量比为0.2~0.5g:10~20mL;分散液与海藻酸钠溶液的体积比为1:5~1:10;

(2)将步骤(1)得到的混合液与氯化钙溶液分别从两个注入口注入微流反应器,调控注入速率,连续制备磁场响应性光子晶体纤维。

所述步骤(1)中的Fe3O4@C磁性胶体微球是通过水热法制得。

所述步骤(1)中超声分散的时间为2~5h。

所述步骤(1)中的海藻酸钠溶液的浓度为2~4%。

所述步骤(2)中的氯化钙溶液的浓度为3~6%。

所述步骤(2)中的微流反应器是通过采用两种内径比为5:1的玻璃毛细管,将细玻璃毛细管以共轴的方式放入到粗玻璃毛细管内部,然后用两个底端分别刻有凹槽的注射器针头和环氧树脂分别对细玻璃毛细管的一端以及两个玻璃毛细管的交界处进行密封制得。

所述细玻璃毛细管的直径为200~400μm。

所述粗玻璃毛细管的直径为1000~2000μm。

所述细玻璃毛细管在粗毛细管中的长度为3~5cm。

所述步骤(2)中混合液与氯化钙溶液的注入速率比为1:1,注入速率为60~120μL/min。

本发明通过利用不同直径的玻璃毛细管对微流器件进行构筑,并用注射器针头和环氧树脂对其密封获得微流器件,然后将通过水热反应制备碳包覆的四氧化三铁胶体微球Fe3O4@C分散到ETPTA中形成一定浓度的分散液;将分散液与海藻酸钠溶液进行混合形成乳浊液;然后利用注射泵将混合乳液注入到微流器件的一个注入口中,另一个注入口注入氯化钙溶液,通过合理控制流速,制备得到一种对外界磁场具有响应型的光子晶体纤维。所制备的响应型光子晶体纤维能够在微流器件中实现连续性制备。该纤维在智能检测纤维材料的制备领域具有重要的应用价值。

有益效果

(1)本发明采用微流反应器件连续制备响应性纤维的方法,能够通过控制合成过程中分散液的流速实现响应性纤维的连续性制备,对响应性纤维在实际生产中的应用具有重要意义。

(2)本发明方法简便实用,对制备具有检测功能的智能纤维材料具有重要的参考价值。

(3)本发明所制备的外界磁场响应型纤维,能够在实现对外界磁场进行检测的同时而不消耗能源,达到了节约能源的目的。

附图说明

图1为实施例1中微流反应器的数码照片;

图2为实施例1中分散液(a)以及混合液(b)在磁场下的显色性能图片;

图3为实施例2中混合液的光学显微照片;

图4为实施例3中磁场响应性光子晶体纤维的数码照片(a)和光学显微照片(b)。

图5为实施例3中磁场响应性光子晶体纤维在无磁场(a)和有磁场(b)时的反射光谱图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

(1)称取0.2g的Fe3O4@C磁性胶体微球加入到10mL的ETPTA中,转移至超声清洗机中超声分散2h形成均匀的分散液;量取2mL的分散液与10mL浓度为4%的海藻酸钠溶液混合并充分震荡,使Fe3O4@C的ETPTA分散液以微液滴的形式均匀的分散在海藻酸钠溶液中,得到混合液。

(2)分别选取内径为200μm、1000μm的两根玻璃毛细管,将内径为200μm的玻璃毛细管以共轴的方式放入内径为1000μm的玻璃毛细管内部,使其在粗玻璃毛细管内部的长度为3cm;然后用两个底端分别刻有凹槽的注射器针头和环氧树脂分别对细玻璃毛细管的一端以及两个玻璃毛细管的交界处进行密封获得微流反应器,如图1所示。

(3)将步骤(1)得到的混合液转移至一个注射器中,再选取另一个注射器盛放浓度为6%的氯化钙溶液,将两个注射器分别固定在两个注射泵上,将混合液从细的玻璃毛细管一端的针头处注入,氯化钙溶液从两个玻璃毛细管交界处的针头中注入,利用注射泵控制两种溶液的注入速度为60μL/min,当混合液与氯化钙溶液在微流体器件中相遇时,混合液中的海藻酸钠溶液会立刻发生交联形成海藻酸钙纤维,而Fe3O4@C的ETPTA的分散液则不会发生反应并以液滴的形式存在海藻酸钙纤维的内部,最终制得磁场响应性光子晶体纤维,收集在培养皿中。

本实施例步骤(1)中制得的分散液(a)以及混合液(b)在磁场下的显色性能如图2所示,可知所制得的分散液能够在磁场下显示红色,分散液与海藻酸钠溶液混合后的混合液在磁场下同样能够显示红色。

实施例2

(1)称取0.3g的Fe3O4@C磁性胶体微球加入到10mL的ETPTA中,转移至超声清洗机中超声分散3h形成均匀的分散液;量取3mL的分散液与10mL浓度为3%的海藻酸钠溶液混合并充分震荡,得到混合液。

(2)分别选取内径为300μm、1500μm的两根玻璃毛细管,将内径为300μm的玻璃毛细管以共轴的方式放入内径为1500μm的玻璃毛细管内部,使其在粗玻璃毛细管内部的长度为4cm;然后用两个底端分别刻有凹槽的注射器针头和环氧树脂分别对细玻璃毛细管的一端以及两个玻璃毛细管的交界处进行密封获得微流反应器。

(3)将步骤(1)得到的混合液转移至一个注射器中,再选取另一个注射器盛放浓度为5%的氯化钙溶液,将两个注射器分别固定在两个注射泵上,将混合液从细的玻璃毛细管一端的针头处注入,氯化钙溶液从两个玻璃毛细管交界处的针头中注入,利用注射泵控制两种溶液的注入速度为90μL/min,当混合液与氯化钙溶液在微流体器件中相遇时,混合液中的海藻酸钠溶液会立刻发生交联形成海藻酸钙纤维,而Fe3O4@C的ETPTA的分散液则不会发生反应并以液滴的形式存在海藻酸钙纤维的内部,最终制得磁场响应性光子晶体纤维,收集在培养皿中。

本实施例步骤(1)制得的混合液的光学显微照片如图3所示,可见Fe3O4@C的ETPTA分散液以微液滴的形式均匀的分散在海藻酸钠溶液中。

实施例3

(1)称取0.5g的Fe3O4@C磁性胶体微球加入到20mL的ETPTA中,转移至超声清洗机中超声分散2h形成均匀的分散液;量取4mL的分散液与15mL浓度为2%的海藻酸钠溶液混合并充分震荡,使Fe3O4@C的ETPTA分散液以微液滴的形式均匀的分散在海藻酸钠溶液中,得到混合液。

(2)分别选取内径为400μm、2000μm的两根玻璃毛细管,将内径为400μm的玻璃毛细管以共轴的方式放入内径为2000μm的玻璃毛细管内部,使其在粗玻璃毛细管内部的长度为5cm;然后用两个底端分别刻有凹槽的注射器针头和环氧树脂分别对细玻璃毛细管的一端以及两个玻璃毛细管的交界处进行密封获得微流反应器。

(3)将步骤(1)得到的混合液转移至一个注射器中,再选取另一个注射器盛放浓度为3%的氯化钙溶液,将两个注射器分别固定在两个注射泵上,将混合液从细的玻璃毛细管一端的针头处注入,氯化钙溶液从两个玻璃毛细管交界处的针头中注入,利用注射泵控制两种溶液的注入速度为120μL/min,当混合液与氯化钙溶液在微流体器件中相遇时,混合液中的海藻酸钠溶液会立刻发生交联形成海藻酸钙纤维,而Fe3O4@C的ETPTA的分散液则不会发生反应并以液滴的形式存在海藻酸钙纤维的内部,最终制得磁场响应性光子晶体纤维,收集在培养皿中。

本实施制得的磁场响应性光子晶体纤维的数码照片(a)和光学显微照片(b)如图4所示,可见未发生反应的Fe3O4@C的ETPTA分散液以液滴的形式存在海藻酸钙纤维的内部。

对本实施例制得的磁场响应性光子晶体纤维进行磁场响应性能测试,其在无磁场(a)和有磁场(b)时的反射光谱图如图5所示,可知当没有外界磁场作用于纤维时,纤维的反射光谱没有反射峰;但是当把纤维转移到磁场下以后,纤维对磁场产生反应,会在600nm左右出现反射峰,证明纤维具有一定的磁场响应性。

一种连续制备磁场响应性光子晶体纤维的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部