专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用

一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用

IPC分类号 : C07J73/00,A61P35/00,A61P35/02

申请号
CN201710534521.9
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2017-07-03
  • 公开号: 107188924B
  • 公开日: 2017-09-22
  • 主分类号: C07J73/00
  • 专利权人: 贵州大学

专利摘要

本发明公开了一种丹参酮骨架拼接双吲哚或双吡咯类化合物,本发明以取代的吲哚或取代的吡咯与丹参酮按摩尔比为3:1的比例在极性溶剂乙腈中,加温50℃条件下进行加成反应72小时,获得丹参酮骨架拼接双吲哚或双吡咯烷烃类化合物。该类骨架包含多重生物活性的丹参酮骨架和双吲哚或双吡咯烷烃类骨架,可以为生物活性筛选提供化合物源,对多靶点多用途药的筛选和制药行业具有重要的应用价值。本发明操作简单易行,原料合成便宜易得,可以在各种极性有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性,且这些化合物具有开发成为抗肿瘤药物的潜力。

权利要求

1.一种丹参酮骨架拼接双吲哚或双吡咯类化合物,其特征在于:该化合物具有如通式(Ⅰ)所示的结构:

式中,R为H时:1,2-位、3,4-位和5,6-位为双键;R为甲基时:1,2-位、3,4-位和5,6-位都为饱和碳;Ar为取代的吲哚或取代的吡咯。

2.根据权利要求1所述的化合物,其特征在于:通式(Ⅰ)的结构类型分为以下四类:

式中,R1为H或甲基;R2为H或甲氧基或卤素;R3为H或卤素;R4为H或卤素;R5为甲基或苄基。

3.一种如权利要求1所述的丹参酮骨架拼接双吲哚或双吡咯类化合物的制备方法,其特征在于:将取代的吲哚或取代的吡咯与丹参酮按摩尔比为3:1的比例在极性溶剂中,加温条件下反进行加成反应,获得丹参酮骨架拼接双吲哚或双吡咯类化合物。

4.根据权利要求2所述的丹参酮骨架拼接双吲哚或双吡咯类化合物的制备方法,其特征在于:所述的极性溶剂为甲醇、乙醇、丙醇、异丙醇、正丁醇、乙腈、四氢呋喃、乙醚、DMSO或DMF。

5.根据权利要求2所述的丹参酮骨架拼接双吲哚或双吡咯类化合物的制备方法,其特征在于:取代的吲哚或取代的吡咯与丹参酮在极性溶剂中加温条件下反应,反应温度为40-90℃,反应时间为5-40小时。

6.一种如权利要求1所述的丹参酮骨架拼接双吲哚或双吡咯类化合物在制备防治肿瘤疾病药物的应用。

说明书

技术领域

本发明涉及药物化学技术领域,尤其是一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用。

背景技术

把具有生物活性天然产物骨架拼接到具有生物活性其他天然产物骨架中在有机化学和医药化学中是极其重要的研究领域。(1)、双吲哚或双吡咯烷烃化合物是广泛存在多重药物活性分子中,具有消炎、抗肿瘤、抗氧化等生物活性。(2)、丹参酮来源于中国传统中药丹参的根,具有多重药物活性,主要代表性活性成分包括:Tanshinone I,Tanshinone IIA,Dihydrotanshinone,Dihydrotanshinone I和Cryptotanshinone。鉴于丹参酮骨架化合物和双吲哚或双吡咯类化合物具有多重生物活性。因此,把丹参酮骨架拼接到双吲哚或双吡咯类化合物中,合成一系列新的潜在多活性骨架的化合物,可以为生物活性筛选提供化合物源,对多靶点多用途药物的筛选和制药行业具有重要的应用价值(如附图7和附图8所示)。

特别强调的是,本发明所合成的丹参酮骨架拼接双吲哚或双吡咯类化合物,也是一种既含有丹参酮类骨架,也含有双吲哚或双吡咯类骨架。在自然界中,吲哚或吡咯生物碱属于极其丰富的天然产物库,但是自然界和人工合成的化合物中,没有一例含有丹参酮类骨架的双吲哚或双吡咯生物碱骨架的拼接产物。因此,本发明合成一系列新的潜在多活性骨架的丹参酮骨架拼接双吲哚或双吡咯类化合物,可以为生物活性筛选提供化合物源,对多靶点多用途药物的筛选和制药行业具有重要的应用价值。

发明内容

本发明的目的是:提供一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法与应用,它是一类重要的医药中间体类似物和药物分子类似物,对多靶点多用途药物筛选和制药行业具有重要的应用价值,且其合成方法非常经济简便。

本发明是这样实现的:该化合物具有如通式(Ⅰ)所示的结构:

式中,R为H时:1,2-位、3,4-位和5,6-位为双键;R为甲基时:1,2-位、3,4-位和5,6-位都为饱和碳;Ar为取代的吲哚或取代的吡咯。

2、根据权利要求1所述的化合物,其特征在于:通式(Ⅰ)的结构类型分为以下四类:

式中,R1为H或甲基;R2为H或甲氧基或卤素;R3为H或卤素;R4为H或卤素;R5为甲基或苄基。

丹参酮骨架拼接双吲哚或双吡咯类化合物的制备方法,将取代的吲哚或取代的吡咯与丹参酮按摩尔比为3:1的比例在极性溶剂中,加温条件下反进行加成反应,获得丹参酮骨架拼接双吲哚或双吡咯类化合物。

所述的极性溶剂为甲醇、乙醇、丙醇、异丙醇、正丁醇、乙腈、四氢呋喃、乙醚、DMSO或DMF。

取代的吲哚或取代的吡咯与丹参酮在极性溶剂中加温条件下反应,反应温度为40-90℃,反应时间为5-40小时。

所述的丹参酮骨架拼接双吲哚或双吡咯类化合物在制备防治肿瘤疾病药物的应用。

本发明的反应原理如下:

其中,R1,R2,R3,R4,R5如上所述。

通过采用上述技术方案,以取代的吲哚或取代的吡咯与丹参酮按摩尔比为3:1的比例在极性溶剂乙腈中,加温50℃条件下进行加成反应72小时,获得丹参酮骨架拼接双吲哚或双吡咯烷烃类化合物。该类骨架包含多重生物活性的丹参酮骨架和双吲哚或双吡咯烷烃类骨架,可以为生物活性筛选提供化合物源,对多靶点多用途药的筛选和制药行业具有重要的应用价值。本发明操作简单易行,原料合成便宜易得,可以在各种极性有机溶剂中进行,也具有较好的空气稳定性,适用性广,对于各种取代基都有很好的兼容性。

附图说明

附图1及附图2为本发明的实施例1的化合物3a谱图数据;

附图3及附图4为本发明的实施例1的化合物3b谱图数据;

附图5及附图6为本发明的实施例1的化合物3c谱图数据;

附图7和附图8为本发明的流程图;

附图9为本发明的实施例1的化合物3i的X衍射单晶图。

具体实施方式

本发明的实施例1:在反应管中依次加入140.4mg吲哚(1.2mmol),110.4mg丹参酮I(0.40mmol),4.4mg对甲基苯磺酸(20mmol%)和5.0毫升乙腈溶液,50℃下反应72h,TLC检测反应完毕后,旋干乙腈,直接上样经柱层析(洗脱剂:V(石油醚):V(乙酸乙酯)=4:1)纯化得147.6mg化合物3a,淡黄色固体,熔点:214.1-216.1℃;产率75%。核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.15(s,3H),2.53(s,3H),6.76(s,2H),6.84-6.87(m,2H),7.01-7.04(m,2H),7.16-7.26(m,4H),7.35(d,J=8.4Hz,2H),7.66(s,1H),7.82(d,J=8.8Hz,1H),8.24(d,J=8.8Hz,1H),8.38(d,J=8.4Hz,1H),10.98(br s,1H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,55.1,112.3,112.4,118.1,119.1,120.9,121.6,122.7,122.8,124.0,126.0,126.5,126.8,127.1,128.9,130.3,131.4,132.1,132.2,135.3,137.5,142.7,146.0,199.6;HRMS(ESI-TOF)m/z:Calcd.for C34H24N2NaO2[M+Na]+:515.1735;Found:515.1738.

化合物3b-3r的制备方法同化合物3a,投料比与化合物3a相同,可得到化合物3b-3r,反应产率见表1和表2,但需强调的是本发明的化合物不限于表1和表2所表示的内容。

表1为一种丹参酮骨架拼接双吲哚或双吡咯类化合物的化学结构

表2为一种丹参酮骨架拼接双吲哚或双吡咯类化合物的化学结构

本实施例制备化合物3b:黄色固体,熔点:222.9-223.4℃,产率69%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.17(s,3H),2.52(s,3H),3.61(s,6H),6.78(s,2H),6.87-6.91(m,2H),7.06-7.10(m,2H),7.15-7.28(m,5H),7.35(d,J=8.4Hz,2H),7.81(d,J=8.8Hz 1H),8.23(d,J=8.8Hz,1H),8.37(d,J=8.4Hz,1H);13C NMR(DMSO-d6,100MHz)δ:8.7,19.9,32.9,55.0,110.6,111.4,118.1,119.3,121.1,121.7,122.6,122.8,124.0,126.6,126.7,126.8,127.2,128.9,130.1,130.3,131.5,132.1,132.3,135.3,137.9,142.8,145.9,199.5;HRMS(ESI-TOF)m/z:Calcd.for C36H28N2NaO2[M+Na]+:543.2048;Found:543.2047.

本实施例制备化合物3c:黄色固体,熔点:>320.0℃,产率56%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.16(s,3H),2.54(s,3H),3.53(s,6H),6.64(s,2H),6.69-6.73(m,4H),7.18-7.28(m,4H),7.66(s,1H),7.81(d,J=8.8Hz,1H),8.24(d,J=8.8Hz,1H),8.43(d,J=8.4Hz,1H),10.83(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,55.0,55.8,103.2,111.1,111.7,113.0,122.9,123.0,126.6,127.0,130.2,132.1,132.7,142.7,146.1,153.2,199.5;HRMS(ESI-TOF)m/z:Calcd.for C36H28N2NaO4[M+Na]+:575.1947;Found:575.1948.

本实施例制备化合物3d:黄色固体,熔点:>320.0℃,产率61%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.14(s,3H),2.53(s,3H),6.81(s,2H),7.13-7.20(m,3H),7.25-7.35(m,5H),7.68(s,1H),7.81(d,J=8.8Hz,1H),8.25(d,J=9.2Hz,1H),8.33(d,J=8.4Hz,1H),11.23(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,54.8,111.7,111.8,114.7,118.1,122.3,122.5,122.7,123.6,124.3,125.9,127.3,127.7,128.0,129.2,130.3,131.9,132.1,135.5,136.3,143.1,146.1,199.6;HRMS(ESI-TOF)m/z:Calcd.for C34H22Br2N2NaO2[M+Na]+:670.9946;Found:670.9947.

本实施例制备化合物3e:黄色固体,熔点:>320.0℃,产率51%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.15(s,3H),2.54(s,3H),6.71-6.74(m,4H),7.11-7.28(m,6H),7.65-7.66(m,1H),7.80-7.83(m,1H),8.24-8.28(m,1H),8.28-8.37(m,1H),11.05(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,55.0,98.4(d,JCF=25.1Hz),107.7(d,JCF=23.5Hz),112.5,118.1,121.7,121.8,122.4,122.7,123.2,123.8,126.4,126.6,127.2,129.0,130.3,131.6,132.1,132.2,135.4,137.3,137.5,142.8,146.0,159.2(d,JCF=233.7Hz),199.7;HRMS(ESI-TOF)m/z:Calcd.for C34H22F2N2NaO2[M+Na]+:551.1547;Found:551.1549.

本实施例制备化合物3f:黄色固体,熔点:212.5-214.5℃,产率53%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.15(s,3H),2.54(s,3H),6.79(s,2H),6.88-6.91(m,2H),7.15-7.20(m,3H),7.24-7.28(m,1H),7.41(s,2H),7.67(s,1H),7.81(d,J=8.8Hz,1H),8.34(d,J=8.8Hz,1H),11.12(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,54.9,112.1,112.5,118.1,119.6,122.1,122.4,122.6,123.8,125.1,126.2,126.5,127.1,127.3,129.1,130.3,131.7,132.1,132.2,135.4,138.0,142.9,146.1,199.6;HRMS(ESI-TOF)m/z:Calcd.for C34H22Cl2N2NaO2[M+Na]+:583.0956;Found:583.0957.

本实施例制备化合物3g:黄色固体,熔点:176.5-178.0℃,产率50%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.16(s,3H),2.54(s,3H),6.77(s,2H),6.87-6.91(m,2H),7.12-7.20(m,5H),7.23-7.27(m,1H),7.69(s,1H),7.83(d,J=8.8Hz,1H),8.27(d,J=8.8Hz,1H),8.33(d,J=8.8Hz,1H),11.4(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,55.1,113.6,116.7,118.1,119.9,120.4,121.4,122.3,122.5,123.7,126.0,127.1,127.3,128.3,129.1,130.3,131.8,132.1,134.3,135.4,143.0,146.2,199.4;HRMS(ESI-TOF)m/z:Calcd.for C34H22Cl2N2NaO2[M+Na]+:583.0956;Found:583.0959.

本实施例制备化合物3h:黄色固体,熔点:>320.0℃,产率57%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.15(s,3H),2.52(s,3H),6.76(s,2H),6.82-6.86(m,2H),7.19-7.29(m,6H),7.82(d,J=8.8Hz,1H),8.25(d,J=8.4Hz,1H),8.31-8.34(m,1H),11.30(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.9,55.2,105.1,120.8,122.5,124.5,127.1,128.0,135.7,143.0,146.2,199.3;HRMS(ESI-TOF)m/z:Calcd.for C34H22Br2N2NaO2[M+Na]+:670.9946;Found:670.9950.

本实施例制备化合物3i:黄色固体,熔点:232.3-234.0℃,产率81%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.07(s,3H),1.14(s,6H),1.35-1.36(m,2H),1.43-1.45(m,2H),2.60(s,2H),6.65(d,J=2.4Hz,2H),6.81-6.84(m,2H),6.99-7.04(m,2H),7.10(d,J=7.6Hz,2H),7.34(d,J=8.0Hz,2H),7.43(d,J=8.4Hz,1H),7.51(s,1H),7.59(d,J=8.4Hz,1H),10.94(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.5,29.6,32.2,34.5,38.4,54.7,55.5,112.3,112.9,117.8,119.0,120.9,121.6,122.4,124.9,125.9,126.6,126.8,128.9,132.7,137.4,139.9,141.6,146.1,198.8;HRMS(ESI-TOF)m/z:Calcd.for C35H30N2NaO2[M+Na]+:533.2205;Found:533.2207.

本实施例制备化合物3j:黄色固体,熔点:>320.0℃,产率75%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.10(s,6H),1.12(s,3H),1.37-1.39(m,2H),1.43-1.45(m,2H),2.69(s,2H),3.52(s,6H),6.57(s,2H),6.66(s,2H),6.70-6.73(m,2H),7.26(d,J=8.4Hz,2H),7.42(d,J=8.4Hz,1H),7.52-7.57(m,2H),10.81(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.6,19.5,29.4,32.2,34.5,38.4,54.6,55.8,103.5,110.9,112.4,112.9,117.8,122.5,124.7,126.7,127.1,127.2,128.8,132.6,132.7,139.9,141.5,146.1,146.2,153.1,198.9;HRMS(ESI-TOF)m/z:Calcd.for C37H34N2NaO4[M+Na]+:593.2416;Found:593.2417.

本实施例制备化合物3k:黄色固体,熔点:225.6-226.6℃,产率79%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.09(s,6H),1.13(s,3H),1.36-1.37(m,2H),1.42-1.44(m,2H),2.60(s,2H),6.67(s,2H),6.70-6.75(m,2H),7.07(s,2H),7.14(d,J=10.0Hz,2H),7.43(d,J=8.0Hz,1H),7.52(s,1H),7.58(d,J=8.0Hz,1H),11.03(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.4,29.6,32.1,34.5,38.3,54.6,55.4,98.2(d,JCF=25.1Hz),107.6(d,JCF=25.4Hz),113.1,117.9,121.8,121.9,122.2,123.3,124.5,126.6,128.9,132.8,137.3,137.4,140.0,141.7,146.1(d,JCF=12.0Hz),159.4(d,JCF=233.5Hz),198.9;HRMS(ESI-TOF)m/z:Calcd.for C35H28F2N2NaO2[M+Na]+:569.2017;Found:569.2018.

本实施例制备化合物3l:黄色固体,熔点:239.6-241.3℃,产率59%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.07(s,3H),1.13(s,6H),1.36-1.38(m,2H),1.42-1.44(m,2H),2.58(s,2H),6.70(s,2H),6.86-6.90(m,2H),7.05-7.07(m,2H),7.40-7.44(m,3H),7.52(s,1H),7.59(d,J=8.4Hz,1H),11.09(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.4,29.6,32.1,34.5,38.3,54.5,112.0,113.1,117.9,119.5,122.1,124.2,125.3,126.4,126.5,127.1,128.9,132.9,137.9,140.0,141.8,146.1,146.2,146.3,198.7;HRMS(ESI-TOF)m/z:Calcd.for C35H28Cl2N2NaO2[M+Na]+:601.1426;Found:601.1427.

本实施例制备化合物3m:黄色固体,熔点:240.7-243.0℃,产率65%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.08(s,6H),1.10(s,3H),1.32-1.34(m,2H),1.39-1.42(m,2H),2.57-2.59(m,2H),6.66-6.69(m,2H),6.78-6.83(m,2H),7.09-7.11(m,2H),7.27(d,J=7.6Hz,2H),7.43-7.45(m,1H),7.53-7.60(m,2H),11.28(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.4,29.6,32.1,34.5,38.3,54.8,105.1,114.2,118.0,120.5,120.7,122.1,124.0,124.4,126.4,127.0,128.2,128.8,133.0,135.7,140.1,141.9,146.3,146.4,198.5;HRMS(ESI-TOF)m/z:Calcd.for C35H28Br2N2NaO2[M+Na]+:689.0415;Found:689.0418.

本实施例制备化合物3n:黄色固体,熔点:190.6-192.4℃,产率71%;核磁共振和高分辨质谱测试等结果如下:1H NMR(DMSO-d6,400MHz)δ:1.08(s,3H),1.12(s,6H),1.34-1.36(m,2H),1.41-1.43(m,2H),2.57-2.59(m,2H),6.68(s,2H),6.84-6.89(m,2H),7.06(d,J=7.6Hz,2H),7.13(d,J=7.6Hz,2H),7.43(d,J=8.4Hz,1H),7.54(s,1H),7.59(d,J=8.0Hz,1H),11.39(br s,2H);13C NMR(DMSO-d6,100MHz)δ:8.5,19.4,29.6,32.1,34.5,38.3,54.6,114.2,116.6,118.0,120.0,120.3,121.4,122.1,124.1,126.4,127.0,128.4,128.8,133.0,134.2,140.0,141.9,146.2,146.4,198.6;HRMS(ESI-TOF)m/z:Calcd.for C35H28Cl2N2NaO2[M+Na]+:601.1426;Found:601.1426.

本实施例制备化合物3o:黄色固体,熔点:258.7-260.0℃,产率51%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.48(s,3H),2.65(s,3H),3.10(s,3H),3.47(s,3H),5.95-5.96(m,1H),6.04-6.06(m,1H),6.11-6.12(m,1H),6.32(s,1H),6.44(s,1H),6.61(s,1H),7.24-7.26(m,1H),7.35(s,1H),7.41-7.45(m,1H),7.78(d,J=8.8Hz,1H),8.18-8.20(m,1H),8.92(d,J=8.8Hz,1H);13C NMR(CDCl3,100MHz)δ:7.6,20.0,35.0,36.4,55.8,106.2,109.7,112.7,117.9,119.4,121.6,122.0,122.6,122.8,123.3,124.5,126.3,127.0,128.8,130.5,130.7,132.2,132.6,132.8,134.6,141.1,146.5,200.6;HRMS(ESI-TOF)m/z:Calcd.for C28H24N2NaO2[M+Na]+:443.1735;Found:443.1738.

本实施例制备化合物3p:黄色固体,熔点:122.1-124.0℃,产率62%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.51(s,3H),2.67(s,3H),4.44(d,J=14.4Hz,1H),4.54(d,J=14.8Hz,1H),4.89(s,2H),6.03-6.04(m,1H),6.09-6.10(m,1H),6.17-6.18(m,1H),6.45-6.46(m,1H),6.52(s,2H),6.92-6.95(m,2H),6.98-7.01(m,2H),7.16-7.28(m,9H),7.41-7.45(m,1H),7.77(d,J=8.8Hz,1H),8.19(d,J=8.8Hz,1H),8.92(d,J=8.8Hz,1H);13C NMR(CDCl3,100MHz)δ:8.0,20.0,51.6,53.5,55.9,106.8,110.0,112.5,118.0,119.4,121.6,121.9,122.3,122.6,122.7,124.6,126.6,126.7,126.8,127.0,127.5,127.6,128.4,128.5,128.7,128.9,130.5,130.9,132.2,132.6,133.3,134.6,137.2,138.0,141.3,146.2,200.4;HRMS(ESI-TOF)m/z:Calcd.for C40H32N2NaO2[M+Na]+:595.2361;Found:595.2360.

本实施例制备化合物3q:黄色固体,熔点:215.6-216.3℃,产率58%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.21(s,3H),1.29(s,3H),1.41(s,3H),1.56-1.62(m,3H),1.76-1.81(m,1H),2.72-2.78(m,1H),3.04(s,3H),3.20-3.28(m,1H),3.52(s,3H),5.82-5.84(m,1H),5.98-6.03(m,2H),6.25(s,1H),6.47-6.49(m,1H),6.56(s,1H),7.24(s,1H),7.42(d,J=8.0Hz,1H),7.50(d,J=8.4Hz,1H);13C NMR(CDCl3,100MHz)δ:7.6,19.8,29.9,32.0,32.2,34.5,35.0,36.5,38.5,55.2,106.0,109.7,112.5,117.6,119.8,121.5,121.8,122.1,123.1,124.1,126.8,129.0,132.0,133.3,140.2,140.9,146.0,146.6,199.5;HRMS(ESI-TOF)m/z:Calcd.for C29H30N2NaO2[M+Na]+:461.2205;Found:461.2207.

本实施例制备化合物3r:黄色固体,熔点:95.2-96.9℃,产率72%;核磁共振和高分辨质谱测试等结果如下:1H NMR(CDCl3,400MHz)δ:1.24(s,3H),1.32(s,3H),1.44-1.53(m,4H),1.61-1.63(m,2H),1.74-1.81(m,1H),2.71-2.76(m,1H),3.17-3.26(m,1H),4.41(d,J=14.8Hz,1H),4.50(d,J=14.8Hz,1H),4.95(s,2H),5.96-5.97(m,1H),6.07-6.11(m,2H),6.44-6.47(m,2H),6.58-6.59(m,1H),6.99-7.02(m,4H),7.17-7.30(m,7H),7.44(d,J=8.4Hz,1H),7.53(d,J=8.0Hz,1H);13C NMR(CDCl3,100MHz)δ:8.0,19.8,29.9,32.1,32.2,34.5,38.6,51.5,53.6,55.3,106.7,110.1,112.3,117.7,119.9,121.5,121.7,122.1,122.2,124.4,126.7,126.8,127.4,127.7,128.4,128.5,128.7,128.8,129.1,132.2,133.8,137.4,138.2,140.3,140.9,146.0,146.4,199.2;HRMS(ESI-TOF)m/z:Calcd.for C41H38N2NaO2[M+Na]+:613.2831;Found:613.2834.

本发明的式(1)化合物具有重要的生物活性,体外对人前列腺(PC-3),人肺癌细胞(A549)以及人白血病细胞(K562)共三株肿瘤细胞的细胞毒性试验表明:此类式(1)所示的结构的丹参酮骨架拼接双吲哚或双吡咯类化合物对肿瘤细胞生长具有抑制作用,有可能发展成为新的防治肿瘤药物。但需强调的是本发明的化合物不限于人前列腺(PC-3),人肺癌细胞(A549)以及人白血病细胞(K562)表示的细胞毒性。

药理实施例1:化合物3a,3b,3d,3e,3f,3g,3i,3j,3k,3l,3m,3n,3p和3r对PC-3细胞的细胞毒性

PC-3(人前列腺癌)细胞用RPMI-1640培养基培养,培养基中含10%的胎牛血清,100U/mL青霉素及100U/mL的链霉素。细胞以每孔5000个细胞的浓度加入到96孔中,在37℃含5%CO2潮湿空气的培养箱中培养24小时。

细胞存活率的测定用改良MTT法。细胞经过24小时的孵育后,分别将新配的化合物3a,3b,3d,3e,3f,3g,3i,3j,3k,3l,3m,3n,3p和3r的二甲基亚砜溶液以浓度梯度加入到各孔中,使孔中化合物最终浓度分别为5μmol/L,10μmol/L,20μmol/L,40μmol/L和80μmol/L。48小时后,每孔加入10μL MTT(5mg/mL)的磷酸盐缓冲液,再继续在37℃培养4小时后,离心5分钟除去未转化的MTT,每孔中加入150μL二甲基亚砜。以溶解还原的MTT晶体甲臜(formazan),用酶标仪在490nm波长测定OD值。其中化合物3a,3b,3d,3e,3f,3g,3i,3j,3k,3l,3m,3n,3p和3r对PC-3细胞半抑制浓度IC50由spss软件(19版本)分析得到。化合物3a对PC-3肿瘤细胞的IC50为43.6μmol/L;化合物3d对PC-3肿瘤细胞的IC50为39.8μmol/L;化合物3e对PC-3肿瘤细胞的IC50为54.2μmol/L;化合物3f对PC-3肿瘤细胞的IC50为76.7μmol/L;化合物3i对PC-3肿瘤细胞的IC50为52.2μmol/L;化合物3j对PC-3肿瘤细胞的IC50为78.2μmol/L;化合物3k对PC-3肿瘤细胞的IC50为45.1μmol/L;化合物3l对PC-3肿瘤细胞的IC50为69.9μmol/L;化合物3m对PC-3肿瘤细胞的IC50为48.5μmol/L;化合物3n对PC-3肿瘤细胞的IC50为37.7μmol/L;化合物3r对PC-3肿瘤细胞的IC50为45.1μmol/L;而阳性对照顺铂对PC-3肿瘤细胞的IC50为26.5μmol/L。

实验结论:PC-3细胞是测试化合物对肿瘤细胞的细胞毒性的有效工具和评价指标。本实验表明此类式(1)所示的丹参酮骨架拼接双吲哚或双吡咯类化合物对PC-3细胞具有较强的细胞毒性,和肿瘤治疗一线用药顺铂同一数量级,有可能发展成新的具有抗肿瘤作用的药物。

药理实施例2:化合物3a,3b,3d,3e,3f,3g,3i,3k,3l,3m,3n和3r对A549细胞的细胞毒性

A549(人非小细胞肺癌肺癌)用DMEM培养基培养,培养基中含10%的胎牛血清,100U/mL的青霉素和100U/mL链霉素。细胞以每孔4000个细胞的浓度加入到96孔中,在37℃含5%CO2潮湿空气的培养箱中培养24小时。

细胞存活率的测定用改良MTT法。具体方法如药理实施例1。化合物3a对A549肿瘤细胞的IC50为23.7μmol/L;化合物3b对A549肿瘤细胞的IC50为77.6μmol/L;化合物3d对A549肿瘤细胞的IC50为69.9μmol/L;化合物3e对A549肿瘤细胞的IC50为45.6μmol/L;化合物3f对A549肿瘤细胞的IC50为39.1μmol/L;化合物3g对A549肿瘤细胞的IC50为43.6μmol/L;化合物3i对A549肿瘤细胞的IC50为50.8μmol/L;化合物3k对A549肿瘤细胞的IC50为21.1μmol/L;化合物3l对A549肿瘤细胞的IC50为62.3μmol/L;化合物3m对A549肿瘤细胞的IC50为27.0μmol/L;化合物3r对A549肿瘤细胞的IC50为19.1μmol/L;化合物3n对A549肿瘤细胞的IC50为65.9μmol/L;而阳性对照顺铂对A549肿瘤细胞的IC50为22.4μmol/L。

实验结论:A549细胞是测试化合物对肿瘤细胞的细胞毒性的有效工具和评价指标。本实验表明此类式(1)所示的丹参酮骨架拼接双吲哚或双吡咯类化合物对A549细胞具有较强的细胞毒性,和肿瘤治疗一线用药顺铂同一数量级,有可能发展成新的具有抗肿瘤作用的药物。

药理实施例3:化合物化合物3a,3b,3d,3e,3f,3i,3k,3m,3n,3p和3r对K562细胞的细胞毒性

K562(人慢性髓系白血病细胞)用RPMI-1640培养基培养,培养基中含10%的胎牛血清,100U/mL的青霉素和100U/mL链霉素。细胞以每孔5000个细胞的浓度加入到96孔中,在37℃含5%CO2潮湿空气的培养箱中培养24小时。

细胞存活率的测定用改良MTT法。具体方法如药理实施例1。化合物3a对K562肿瘤细胞的IC50为23.5μmol/L;化合物3b对K562肿瘤细胞的IC50为72.6μmol/L;化合物3d对K562肿瘤细胞的IC50为34.9μmol/L;化合物3e对K562肿瘤细胞的IC50为45.6μmol/L;化合物3f对K562肿瘤细胞的IC50为35.2μmol/L;化合物3i对K562肿瘤细胞的IC50为65.7μmol/L;化合物3k对K562肿瘤细胞的IC50为45.6μmol/L;化合物3m对K562肿瘤细胞的IC50为55.1μmol/L;化合物3n对K562肿瘤细胞的IC50为21.0μmol/L;化合物3p对K562肿瘤细胞的IC50为57.2μmol/L;化合物3r对K562肿瘤细胞的IC50为21.3μmol/L;而阳性对照顺铂对K562肿瘤细胞的IC50为22.4μmol/L。

实验结论:K562细胞是测试化合物对肿瘤细胞的细胞毒性的有效工具和评价指标。本实验表明此类式(1)所示的丹参酮骨架拼接双吲哚或双吡咯类化合物对K562细胞具有较强的细胞毒性,和肿瘤治疗一线用药顺铂同一数量级,有可能发展成新的具有抗肿瘤作用的药物。

从以上药理实施例中我们可以看出这些化合物对这三株肿瘤细胞都显示有一定的细胞毒性。可见这些化合物具有开发成为抗肿瘤药物的潜力,值得继续深入研究下去。

一种丹参酮骨架拼接双吲哚或双吡咯类化合物及其制备方法及应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部