专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用

一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用

IPC分类号 : H01M4/36,H01M4/48,H01M4/52,H01M4/587,H01M4/62,H01M10/0525,H01G11/30,H01G11/36,H01G11/46,B82Y30/00

申请号
CN201610607847.5
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日:
  • 公开号:
  • 公开日: 2018-11-23
  • 主分类号: H01M4/36
  • 专利权人: 广东工业大学

专利摘要

本发明公开一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用。合成步骤如下:将石墨烯加入到溶有金属盐的有机溶剂中均匀混合,在搅拌条件下滴加一定用量比的去离子水;待分散均匀后转移至水热反应釜中,低温水热反应;所得产物经抽滤、洗涤、烘干,制备出金属氧化物/石墨烯纳米复合材料。本发明方法简单、成本低,水热温度低,规模化生产时安全。所制备的复合材料中的金属氧化物颗粒在石墨烯表面分布均匀,颗粒原位生长,平均粒径在1~3nm之间,将其应用于锂离子电池和超级电容器中,都可实现高比容量、超高倍率性能以及高循环稳定性的电化学性能。

权利要求

1.一种水热合成金属氧化物/石墨烯纳米复合材料的制备方法,其特征在于,包括如下具体步骤:

S1.将氧化石墨烯或部分还原的石墨烯均匀分散到金属盐的有机溶剂中,然后滴加一定用量比的去离子水,搅拌5~120min,得到石墨烯和金属盐的均匀分散液;其中,所述金属盐的有机溶剂的浓度为0.002~1.0mol/L;所述的金属盐与石墨烯的用量比为(0.001~0.2)mol:1g;所述的金属盐与去离子水的用量比为(1.0×10-6~2.0×10-3)mol:1mL;

S2.将步骤S1中的分散液移至水热反应釜中80~120℃,水热反应0.1~72h,待其自然冷却,得到金属氧化物/石墨烯纳米复合材料的水热产物;

S3.将步骤S2所得产物经抽滤、洗涤、烘干处理,得到金属氧化物/石墨烯纳米复合材料。

2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中的氧化石墨烯是采用改进的Hummers法制备所得,所述部分还原的石墨烯是氧化石墨烯经过化学或热处理部分还原所得。

3.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述的金属盐为铁盐、锡盐、钴盐、钛盐及锗盐中的任意一种;

其中,所述铁盐为硫酸铁、硝酸铁、氯化铁、氯化亚铁、醋酸铁的一种或任意两种;

所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡、醋酸亚锡的一种或任意两种;

所述的钛盐为四氯化钛、硫酸钛、溴化钛、碘化钛、钛酸丁酯的一种或任意两种;

所述钴盐为氯化钴、硫酸钴或醋酸钴的一种或任意两种;

所述锗盐为四氯化锗、四乙基锗的一种或两种。

4.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述的有机溶剂为无水乙醇、丙酮或异丙醇中的一种或任意两种。

5.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述抽滤洗涤所用溶剂为乙醇和去离子水中的一种或两种混合。

6.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述烘干的温度为50~90℃,烘干的时间为2~12h。

7.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述金属氧化物颗粒的粒径为1.0~3.0nm。

8.一种由权利要求1-7任一项所述方法制备的金属氧化物/石墨烯纳米复合材料。

9.权利要求8所述的金属氧化物/石墨烯纳米复合材料在锂电池或超级电容器中的应用。

说明书

技术领域

本发明属于纳米材料技术领域,更具体地,涉及一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用。

背景技术

石墨烯是由单层碳原子紧密堆积而成的具有蜂窝状晶格结构的二维纳米材料,其特殊的二维结构,使其具有完美的量子隧道效应、半整数的量子霍尔效应和从不消失的电导率等一系列特殊的性质。由于其优越性能,石墨烯被广泛应用于制作各种电化学储能领域。但是由于石墨烯之间具有较强的范德华力,使得石墨烯之间很容易产生团聚,给石墨烯的实际应用造成了极大的影响。为了能够获得稳定分散的石墨烯悬浮液,改善石墨烯与其他基体之间的相溶性,就需要对石墨烯表面进行适当的功能化。其中的有效方法是在石墨烯表面上固定金属氧化物纳米颗粒。石墨烯具有很大的比表面积,且表面有许多含氧官能团,这些都有利于金属氧化物纳米颗粒在石墨烯的表面成核生长,而纳米颗粒的引入,对石墨烯起到空间阻隔的作用,大大降低了石墨烯片层之间发生团聚。而金属氧化物纳米颗粒,其具有物产丰富、价格低、理论比容量高,作为下一代电化学储能材料而被广泛关注。但是由于金属氧化物纳米颗粒自身导电性较差,使得其电阻较大以及在大电流密度下活性物质利用率低。因而导致其倍率性能和功率密度差,实际比容量低。另外,在离子嵌入脱出过程中,它们都会较大的体积变化,由此导致活性材料严重粉化和剥落,造成不可逆容量大以及循环稳定性差。因此,在石墨烯表面上固定金属氧化物纳米颗粒既能有效避免石墨烯团聚,有效发挥石墨烯优势,也能降低金属氧化物纳米颗粒的电子传递电阻,缓冲离子嵌入脱出过程中,金属氧化物纳米颗粒发生较大的体积变化,有效增强复合材料的倍率性能和循环稳定性。

另外,金属氧化物负载在石墨烯表面上的颗粒大小和分散性,在改进其倍率性能和稳定性方面,起着决定性作用。因为小的金属氧化物颗粒加上好的分散性(例如小至几纳米)能使复合物电极具有高的比表面积,进而能有效地缓冲金属氧化物的体积膨胀以及提供更多的反应活性位点,也能增加每个金属氧化物的导电性以及缩短离子固相传输距离,从而有利于提高活性材料的比容量和倍率性能以及稳定性。

目前,在石墨烯表面上生长金属氧化物通常采用的水热温度高于160℃,并且生长的金属氧化物纳米颗粒的尺寸也较大(一般大于5nm),由此会导致在实际规模化应用时,复合材料制备不太安全。另外,金属氧化物纳米颗粒的尺寸大也易导致复合材料的倍率性能和循环稳定性不高,不能满足当前高能耗储能领域的实际应用。

因此,探索一种制备工艺简单、安全,且在石墨烯表面生长金属氧化物纳米颗粒尺寸小的方法用以制备金属氧化物/石墨烯的复合材料是亟待解决的问题。

发明内容

本发明所要解决的技术问题是克服现有技术中制备金属氧化物/石墨烯纳米复合材料的缺陷和不足,提供一种以金属盐溶液和石墨烯为起始材料,制备金属氧化物/石墨烯纳米复合材料的方法,解决了金属氧化物颗粒在石墨烯表面原位生长过大、结晶性差、粒径尺寸和分布不均匀,以及合成成本高、工艺复杂、不易规模化及工业化的问题。

本发明的目的是提供一种水热合成金属氧化物/石墨烯纳米复合材料的制备方法。

本发明另一目的是提供上述方法制备的金属氧化物/石墨烯纳米复合材料。

本发明再一目的是提供上述金属氧化物/石墨烯纳米复合材料在锂离子电池和超级电容器中的应用。

本发明上述目的是通过以下技术方案予以实现:

本发明采用水热法在石墨烯表面原位生长金属氧化物纳米颗粒的新方法,制备金属氧化物/石墨烯纳米复合材料。利用石墨烯具有高比表面积和良好的功能基团的优势,将高载量的金属氧化物纳米颗粒均匀分散并导向组装固定到该载体表面,融合金属氧化物纳米颗粒具有小尺寸(直径为1~3nm)、高比表面积及表面原子比的特点,实现制备高比功率和高比能量且长稳定的电化学储能材料。

具体地,上述金属氧化物/石墨烯纳米复合材料的制备方法,包括如下具体步骤:

S1.将氧化石墨烯或部分还原的石墨烯均匀分散到金属盐的有机溶剂中,然后滴加一定用量比的去离子水,搅拌5~120min,得到石墨烯和金属盐的均匀分散液;

S2.将步骤S1中的分散液移至水热反应釜中80~120℃,水热反应0.1~72h,待其自然冷却,得到金属氧化物/石墨烯纳米复合材料的水热产物;

S3.将步骤S2所得产物经抽滤、洗涤、烘干处理,得到金属氧化物/石墨烯纳米复合材料。

优选地,所述步骤S1中的氧化石墨烯是采用改进的Hummers法制备所得,所述部分还原的石墨烯是氧化石墨烯经过化学或热处理部分还原所得。

优选地,步骤S1中所述的金属盐为铁盐、锡盐、钴盐、钛盐及锗盐中的任意一种,

其中,所述铁盐为硫酸铁、硝酸铁、氯化铁、氯化亚铁、醋酸铁的一种或任意两种;

所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡、醋酸亚锡的一种或任意两种;

所述的钛盐为四氯化钛、硫酸钛、溴化钛、碘化钛、钛酸丁酯的一种或任意两种;

所述钴盐为氯化钴、硫酸钴、硝酸钴、醋酸钴的一种或两种;

所述锗盐为四氯化锗、四乙基锗的一种或两种。

优选地,步骤S1中所述的有机溶剂为无水乙醇、丙酮、乙二醇、异丙醇、N,N-二甲基酰胺、N-甲基吡咯烷酮其中的一种或任意两种。

优选地,步骤S1中所述的金属盐的浓度为0.002~1.0mol/L;所述的金属盐与石墨烯的用量比为0.001~0.2:1mol/g;所述的金属盐与去离子水的用量比为1.0×10-6~2.0×10-3:1mol/mL。

优选地,步骤S3中所述抽滤洗涤所用溶剂为乙醇和去离子水中的一种或两种混合;

优选地,步骤S3中所述烘干的温度为50~90℃,烘干的时间为2~12h。

优选地,步骤S3中所述金属氧化物颗粒的尺寸为1.0~3.0nm。

另外,上述方法制备的金属氧化物/石墨烯纳米复合材料及其在锂离子电池和超级电容器中的应用也在本发明的保护范围之内。

与现有技术相比,本发明具有以下有益效果:

本发明采用水热法在80~120℃的反应温度下,将在石墨烯表面上原位生长1.0~3.0nm的金属氧化物纳米颗粒。相对于传统所采用的水热反应温度,一般高于160℃,由于反应温度高,在相同容器下,其反应所形成的压力也大,故导致晶体成核、结晶速率快,纳米晶易团聚和长大。而低温水热反应时,反应体系压力较小,晶体成核、结晶速率较慢,另外加入的有机溶剂和石墨烯也能起到稳定和分散的作用,因而能有效地抑制纳米晶团聚和长大,故在石墨烯表面能生长较小尺寸(直径为1.0~3.0nm)的金属氧化物纳米颗粒。此外,本发明不需经过苛刻的材料前处理,所使用的金属盐,种类繁多,成本低,水热反应温度低,规模化生产时安全。

本发明通过低温水热过程形成均匀的金属氧化物纳米颗粒,而且能够均匀分散在石墨烯片层上。通过调节水热反应温度和时间可有效地控制金属氧化物纳米颗粒粒径的晶型、大小和形貌,形成大小均一、结晶性好的金属氧化物纳米颗粒。对于解决水热方法制备金属氧化物纳米颗粒和分散均一性的问题有重要改进,而且本发明的制备工艺简单易行、成本低廉、规模化生产时安全。

附图说明

图1为实施例1所制备的二氧化锡/石墨烯纳米复合材料的X射线衍射图。

图2为实施例1所制备的二氧化锡/石墨烯纳米复合材料的透射电镜图像;其中,a为STEM模式下的透射电镜图像,b为高分辨透射电镜图像。

图3为实施例1所制备的二氧化锡/石墨烯纳米复合电极材料在0.1A/g充放电电流密度下的电化学性能图;其中1为库伦效率,2为循环稳定性。

具体实施方式

下面结合说明书附图和具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的简单修改或替换,均属于本发明的范围;除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。

实施例1

1.制备:

S1.量取280ml丙酮置于500ml烧杯中,在磁力搅拌下缓慢加入0.7mmol的SnCl4,再量取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌均匀后超声30min,获得均匀的分散液;

S2.将分散液转移到水热反应釜中100℃反应6h;

S3.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到二氧化锡/石墨烯纳米复合材料。

2.测试分析:

图1是上述制得的二氧化锡/石墨烯的XRD图。从图可知,纳米复合材料中所固定的金属氧化物为二氧化锡。图2是上述制得的二氧化锡/石墨烯纳米复合材料的透射电镜图像。其中,a为STEM模式下的透射电镜图像,b为高分辨透射电镜图像。从图2a可知,高密度的纳米颗粒均匀地负载在石墨烯表面。从图2b可知,尺寸小于3nm的二氧化锡纳米颗粒高密度、均匀地固定在石墨烯表面,并呈现出明显的结晶性。图3是上述所制备二氧化锡/石墨烯作为锂离子电池负极材料的电化学性能。以该复合电极材料作为锂离子电池的负极材料,在0.1A/g的充放电电流密度下,循环100次后,比容量仍高达874mAh/g,库伦效率达99%以上,证实了该纳米复合材料具有良好的循环稳定性和高库伦效率。

实施例2

1.制备:

S1.将采用Hummers法制备的氧化石墨烯在500℃空气气氛下微波热处理2min得到部分还原的石墨烯;

S2.量取280ml无水乙醇置于500ml烧杯中,在磁力搅拌下缓慢加入0.6mmol的FeCl3·6H2O,再称取50mg步骤S1所制备的部分还原的石墨烯,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;

S3.将分散液转移到水热反应釜中120℃反应2h;

S4.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到三氧化二铁/石墨烯纳米复合材料。

2.性能测试:

经测试,该材料中所固定的三氧化二铁纳米颗粒的平均尺寸约为2.7nm,放电电流密度0.1A/g下,循环100次后的可逆比容量约为901mAh/g,放电电流密度达10A/g时,容量保持率仍高达73.7%。

实施例3

1.制备:

S1.将采用Hummers法制备的氧化石墨烯在500℃空气气氛下微波热处理2min得到部分还原的石墨烯;

S2.量取280ml乙二醇置于500ml烧杯中,在磁力搅拌下缓慢加入1mmol的Co(NO3)2·6H2O,再称取50mg步骤S1所制备的部分还原的石墨烯,缓慢加入到上述溶液中,搅拌10min后超声30min,获得均匀的分散液;

S3.将分散液转移到水热反应釜中120℃反应2h;

S4.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到氧化钴/石墨烯纳米复合材料。

2.性能测试:

经测试,该材料中所固定的氧化钴纳米颗粒的平均尺寸约为2.9nm,放电电流密度0.1A/g下,循环200次后的可逆容量约1023mAh/g,放电电流密度达10A/g时,容量保持率仍高达67.8%。

实施例4

S1.量取280ml异丙醇置于500ml烧杯中,在磁力搅拌下缓慢加入1.2mmol的TiCl4,再量取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;

S2.将分散液转移到水热反应釜中80℃反应72h;

S3.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到二氧化钛/石墨烯纳米复合材料。

经测试,该材料中所固定的二氧化钛纳米颗粒的平均尺寸约为2.4nm,放电电流密度0.1A/g下,循环150次后,其容量几乎保持不变;当放电电流密度增加到10A/g后,容量保持率高达85.3%。

实施例5

S1.量取280ml N,N-二甲基酰胺置于500ml烧杯中,在磁力搅拌下缓慢加入0.65mmol GeCl4,再取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;

S2.将分散液转移到水热,反应釜中120℃反应0.1h;

S3.将反应后的产物抽滤、无水乙醇洗涤,最后在50℃干燥12h即得到二氧化锗/石墨烯纳米复合材料。

经测试,该材料中所固定的二氧化锗纳米颗粒的平均尺寸约为3.0nm;放电电流密度0.1A/g下,循环100次后,容量保持在1223mAh/g;当放电电流密度增加到8A/g后,容量仍保持65.9%。

上述实施例仅为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部