专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种油水分离膜的制备方法

一种油水分离膜的制备方法

IPC分类号 : B01D71/02,B01D71/10,B01D71/56,B01D69/02,B01D67/00,B01D61/14,B01D17/022

申请号
CN202010448954.4
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2019-10-14
  • 公开号: CN111905575B
  • 公开日: 2020-11-10
  • 主分类号: B01D71/02
  • 专利权人: 淮阴师范学院

专利摘要

本发明公开了一种油水分离膜的制备方法,将纳米颗粒的表面负载单分散的亲水性纳米粒子以获得超亲水、微纳结构的纳米复合材料。将纳米复合材料分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。将圆片状多孔支撑体经水浸润后置于水平表面,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,经干燥和烧结后获得具有超亲水/水下超疏油的微滤膜层。

权利要求

1.一种油水分离膜的制备方法,其特征在于,包括如下步骤:

第1步,四氧化三铁复合纳米颗粒的制备:按重量份计,取纳米材料载体0.2-0.8份、乙酰丙酮铁0.5-2份,加入三乙二醇100-200份,超声分散;升温反应后,冷却至室温,离心分离并洗涤,冻干后得到四氧化三铁复合纳米颗粒;

第2步,制膜液的配制:按重量份计,取20-40份水、1-5份聚丙烯酰胺溶液,调节pH至10-11后,加入0.2-0.8份的四氧化三铁复合纳米颗粒,再加入5-12份增稠剂、消泡剂,搅拌均匀后,得到制膜液;

第3步,涂膜:在支撑体的表面涂覆制膜液;涂覆制膜液的过程中在支撑体的一侧施加磁场;

第4步,微滤膜的制备:将涂覆制膜液后的支撑体进行干燥、烧结,得到超亲水水下超疏油分离膜。

2.根据权利要求1所述的油水分离膜的制备方法,其特征在于,第1步中,反应过程是在200-300℃下反应2-10h;第2步中,聚丙烯酰胺溶液的浓度是5-15g/L,增稠剂是甲基纤维素溶液,所述的甲基纤维素溶液的浓度是3-8wt%;第4步中,干燥过程的参数是:60-75℃保温5-20h 后温度升至100-120℃保温 5-20h。

3.根据权利要求1所述的油水分离膜的制备方法,其特征在于,第4步中,烧结过程的参数是:室温下 20-40min升温至140-160℃,保温 25-35min,65-85min升温至 280-320℃,保温 25-35min,300-400min升温至600-680℃保持 150-200min后自然降温。

4.权利要求1所述的制备方法所直接得到的油水分离膜。

5.权利要求4所述的油水分离膜在用于油水分离中的应用。

6.根据权利要求5所述的应用,其特征在于,所述的应用中,油水分离是指含油0.5-5wt%的水相。

7.根据权利要求5所述的应用,其特征在于,所述的应用中,分离压力0.05-0.5MPa。

8.根据权利要求5所述的应用,其特征在于,所述的应用中,所述的油选自二甲基硅油、正己烷、甲苯、机油、二氯甲烷或者大豆油。

说明书

技术领域

本发明采用在纳米颗粒的表面固载单分散的四氧化三铁(Fe3O4)纳米粒子,构建具有超亲水/水下超疏油特性的复合膜材料;同时通过湿法成膜在片状多孔氧化铝支撑体表面构筑具有超亲水/水下超疏油的膜层,具体涉及超亲水/水下超疏油分离膜的制备方法。

背景技术

工业生产以及日常生活中都会产生大量含油废水,随着含油废水的大量排放及海上石油泄漏事故的频繁发生,水中油污染已成为危害生态环境及人类健康的重大问题。含油废水的处理,尤其是复杂环境下乳化含油废水的处理一直是一个世界性难题。利用膜分离技术来实现油水分离被认为是最有效的分离手段之一,特别是针对乳化油水体系。然而,传统的聚合物分离膜性能易受到吸水溶胀影响而降低;利用纳米管、纳米线和纳米片等制备得到的超亲水/水下超疏油网膜具有更优异的性能,但由于其制备工艺的限制,导致纳米纤维材料及纤维膜层制备成本较高,分离的选择性和渗透性此长彼消,难以同步提高(Trade-off效应),在油水分离过程中易遭受严重的污染,导致渗透通量以及油水分离效率的急剧下降,严重阻碍膜分离技术在油水分离领域中的发展和应用。因此,开发多功能与高性能的分离膜,克服膜选择性与渗透性的“Trade-off”效应,解决膜污染问题,是实现油水高效、快速以及稳定分离的关键。

发明内容

本发明的目的在于:提供一种具有超亲水/水下超疏油特性的纳米复合材料为超亲水膜材料构筑具有高通量、高选择性的超亲水/水下超疏油膜层。

一种超亲水水下超疏油分离膜,包括支撑层,在支撑层的表面负载有纳米颗粒,所述的纳米颗粒是在纳米材料载体上负载有磁性四氧化三铁颗粒。

在一个实施方式中,所述的纳米材料载体选自凹凸棒石、氧化锌、氧化铁、氧化钛、氧化硅或者氧化锆等。

超亲水水下超疏油分离膜的制备方法,包括如下步骤:

第1步,四氧化三铁复合纳米颗粒的制备:按重量份计,取纳米材料载体0.2-0.8份、乙酰丙酮铁0.5-2份,加入三乙二醇100-200份,超声分散;升温反应后,冷却至室温,离心分离并洗涤,冻干后得到四氧化三铁复合纳米颗粒;

第2步,制膜液的配制:按重量份计,取20-40份水、1-5份聚丙烯酰胺溶液,调节pH至10-11后,加入0.2-0.8份的四氧化三铁复合纳米颗粒,再加入5-12份增稠剂、消泡剂,搅拌均匀后,得到制膜液;

第3步,涂膜:在支撑体的表面涂覆制膜液;

第4步,微滤膜的制备:将涂覆制膜液后的支撑体进行干燥、烧结,得到超亲水水下超疏油分离膜。

在一个实施方式中,第1步中,反应过程是在200-300℃下反应2-10h。

在一个实施方式中,第2步中,聚丙烯酰胺溶液的浓度是5-15g/L,增稠剂是甲基纤维素溶液,所述的甲基纤维素溶液的浓度是3-8wt%。

在一个实施方式中,第3步中,涂覆制膜液的过程中在支撑体的一侧施加磁场。

在一个实施方式中,第4步中,干燥过程的参数是:60-75℃保温 5-20h 后温度升至100-120℃保温 5-20h。

在一个实施方式中,第4步中,烧结过程的参数是:室温下 20-40min升温至140-160℃,保温 25-35min,65-85min升温至 280-320℃,保温 25-35min,300-400min升温至600-680℃保持 150-200min后自然降温。

上述的超亲水水下超疏油分离膜在用于油水分离中的应用。

在一个实施方式中,所述的应用中,油水分离是指含油0.5-5wt%的水相。

在一个实施方式中,所述的应用中,分离压力0.05-0.5MPa。

在一个实施方式中,所述的应用中,所述的油可以选自二甲基硅油、正己烷、甲苯、机油、二氯甲烷或者大豆油等。

在一个实施方式中,所述的应用中,超亲水水下超疏油分离膜用于提高油截留率或者分离膜的抗不可逆污染性能。

磁场在用于提高超亲水水下超疏油分离膜的亲水性、水下油滴接触角、油截留率或者分离膜的抗不可逆污染性能中的应用。

有益效果

本发明具有以下优点:1、与聚合物相比,纳米粒子负载的磁性四氧化三铁纳米复合材料除具有优异的亲水性外,其刚性粗糙结构有利于提高其表面疏油性,而且具有更优异的抗溶剂、耐酸碱及耐热稳定性,更适合用来构建油水分离膜材料;2、与纳米管、纳米线和纳米片等纳米材料相比,制备成本较低,分离性和选择性较高。3、该方法为解决油水分离膜制备问题提供了一条新途径。

附图说明

图1是在磁场作用下的凹凸棒石复合材料的排布过程示意图;

图2是实施例1制备得到的微滤膜的表面SEM照片;

图3是实施例2制备得到的微滤膜的表面SEM照片;

图4是实施例2制备得到的微滤膜的表面SEM照片;

图5是实施例1制备得到的微滤膜的水滴接触角测试过程;

图6是实施例2制备得到的微滤膜的水滴接触角测试过程;

图7是微滤膜的水下油滴接触角;

图8是油滴粘附性实验;

图9是制备得到的负载了磁性四氧化三铁的凹凸棒石的TEM照片。

图10是负载了磁性四氧化三铁的凹凸棒石的红外图谱。

图11是负载了磁性四氧化三铁的凹凸棒石的XRD图谱。

图12是磁性Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线图。

图13是进行油水分离实验中采用S-MATP-M膜的过滤前后的料液照片。

图14是油水过滤前后的膜通量变化。

具体实施方式

本发明提供的超亲水水下超疏油分离膜,包括支撑层,在支撑层的表面负载有纳米颗粒,所述的纳米颗粒是以纳米粒子为载体、并且负载有磁性四氧化三铁颗粒。

在上述的材料中,支撑层表面的纳米颗粒起到了关键性的超亲水/水下超疏油的作用,可以在以水相为主体的物料体系中,起到了对油的分离作用,实现了含油废水中油的分离效果。

以上的材料中,纳米粒子载体,可以选自凹凸棒石、氧化锌、氧化铁、氧化钛、氧化硅或者氧化锆等。

下面以凹凸棒石为例说明上述的材料的制备方法:

( a ) 凹凸棒石表面改性及微纳结构调控

称取一定比例的凹凸棒石和乙酰丙酮铁于三口烧瓶中,再加入一定比例的三乙二醇,超声分散均匀后转移至金属浴,通过改变凹凸棒石-乙酰丙酮铁的质量比、反应温度、搅拌速度、反应时间等因素调控Fe3O4的固载量及其粒径大小和形貌,制备微纳结构和性能可调的超亲水/水下超疏油磁性凹凸棒石。磁性凹凸棒石的制备机理是乙酰丙酮铁和凹凸棒石混合后在加热条件下分解生成Fe2O3,然后在凹凸棒石表面被多元醇还原生成Fe3O4。图10为磁性凹凸棒石结构红外图谱。由图可知,在3500 cm-1处的吸收峰可归结为O-H基团的伸缩振动,1654 cm-1的吸收峰可归结为O-H基团的变型振动。对于凹凸棒石和磁性凹凸棒石,在1027 cm-1处附近的吸收峰可归因于Si-O基团的作用,而对于Fe3O4,在1027 cm-1处附近的吸收峰是由于C-O基团的振动引起的,因为在制备Fe3O4粒子的过程中多元醇有残留。对于磁性凹凸棒石和Fe3O4纳米粒子,在577 cm-1处的吸收峰时因为Fe-O基团的振动引起的。对比凹凸棒石和磁性凹凸棒石可以发现,在577 cm-1处附近,磁性凹凸棒石明显存在吸收峰,这说明Fe3O4纳米粒子被成功的负载到凹凸棒石表面。图11是磁性凹凸棒石的XRD图谱,由图11可知,对于磁性凹凸棒石,XRD图谱中不仅存在凹凸棒石特征峰,还存在 Fe3O4的特征峰,这也进一步证实Fe3O4纳米粒子被成功的负载到凹凸棒石表面。

图12是磁性Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线图。由图可以看出,Fe3O4纳米粒子和磁性凹凸棒石的磁滞回线均穿过原点,即当磁场强度为0时,磁化强度 ( Ms ) 也为0,这说明无论是Fe3O4纳米粒子还是磁性凹凸棒石均具有超顺磁性。另外,Fe3O4纳米粒子得最大磁化强度为29.02 emu/g,磁性凹凸棒石的最大磁化强度为8.34 emu/g。这是因为磁性凹凸棒石中磁性Fe3O4纳米粒子含量较少,但是同样具有Fe3O4纳米粒子的超顺磁性。

( b 1) 基于浸浆法的超亲水/水下超疏油膜层的制备。

将磁性凹凸棒石分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。平板状多孔支撑体经水浸润后置于水平表面上,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,静置,经干燥和烧结后获得凹凸棒石微滤膜(MATP)。

( b2)基于磁场诱导制膜液的具有狭缝孔道的超亲水/水下超疏油膜层的制备。

将磁性凹凸棒石分散在聚丙烯酰胺和甲基纤维素混合水溶液中,强烈搅拌后得到制膜液。平板状多孔支撑体经水浸润后置于平行磁场中,再将一定体积的制膜液缓慢、均匀的滴涂在支撑体表面,在磁场诱导下实现磁性凹凸棒石纳米棒晶在支撑体表面上平行排布,经干燥和烧结后获得凹凸棒石超滤膜。

( c ) 膜层的干燥与烧结

对膜层进行预处理:自然晾干12h,放入烘箱70℃保温 12h 后温度升至110℃保温12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持180min后自然降温。

实施例1 浸浆法制备分离膜

依以下步骤制备具有超亲水/水下超疏油分离膜层:

( a ) 准确称取0.5g凹凸棒石粉体和1g乙酰丙酮铁于250ml的三颈烧瓶中,加入150ml三乙二醇,超声分散1h,保证凹凸棒石和乙酰丙酮铁分散均匀。然后转移至250℃下的金属浴中,冷凝回流,转速350 转/分钟,反应时间5h。待反应结束后冷却至室温,离心分离,获得的沉淀用水和乙醇各洗三遍后转移至冷冻干燥箱,冷冻干燥12 h后获得凹凸棒石纳米复合材料 ( MATP )。由图9可知在凹凸棒石表面上Fe3O4颗粒分布均匀,无脱落现象,其平均粒径在~0.01 μm。

( b ) 在150 ml的锥形瓶中加入37.5 g纯水和2 g聚丙烯酰胺溶液 ( 10 g/L ),强烈搅拌0.5 h,调节溶液的pH为10.5,继续搅拌0.5 h,加入0.5 g MATP,强烈搅拌3 h后加入10 g甲基纤维素溶液 ( 6 wt.% ),搅拌0.5 h,立即加入1-2滴消泡剂,继续搅拌0.5 h,结束后静置消泡,得制膜液,测定其粘度。

( c ) 以圆片状多孔氧化铝为支撑体,采用湿法成膜,在圆片状支撑体表面上滴涂铸膜液,保证其MATP纤维均匀分布,经干燥和烧结后获得凹凸棒石分离膜。具体实验步骤如下:

首先将平板状支撑体置于去离子水中煮沸20 min,以去除表面杂质,然后快速取出支撑体并置于水平表面,将0.5 ml的制膜液缓慢、均匀的滴涂在支撑体表面 ( 操作迅速,确保支撑体表面水分蒸发,支撑体内部依旧保持水分,否则由于毛细管力的作用导致膜层不均匀 ),静置干燥、烧结,获得成品。

干燥、烧结过程的程序是:对膜层进行预处理:自然晾干12h,放入烘箱70℃保温12h 后温度升至110℃保温 12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持 180min后自然降温,制备得到磁性凹凸棒石微滤膜(S-MATP)。

实施例2 基于磁场诱导制膜液的分离的制备

与实施例1的区别,在于本实施例中在涂膜过程中外加了磁场辅助。

依以下步骤制备具有狭缝孔道的超亲水/水下超疏油分离膜层:

( a ) 准确称取0.5g凹凸棒石粉体和1g乙酰丙酮铁于250ml的三颈烧瓶中,加入150ml三乙二醇,超声分散1h,保证凹凸棒石和乙酰丙酮铁分散均匀。然后转移至250℃下的金属浴中,冷凝回流,转速350 转/分钟,反应时间5h。待反应结束后冷却至室温,离心分离,获得的沉淀用水和乙醇各洗三遍后转移至冷冻干燥箱,冷冻干燥12 h后获得磁性凹凸棒石( MATP )。

( b ) 在150 ml的锥形瓶中加入37.5 g纯水和2 g聚丙烯酰胺溶液 ( 10 g/L ),强烈搅拌20 min,加入氨水调节溶液的pH为10.5,继续搅拌10 min,加入0.5 g MATP,强烈搅拌3 h后加入10 g甲基纤维素溶液 ( 6 wt.% ),继续搅拌0.5 h,立即加入1-2滴消泡剂,继续搅拌0.5 h,结束后静置消泡,得制膜液,测定其粘度。

( c ) 以圆片状多孔氧化铝为支撑体,采用湿法成膜,通过磁场诱导实现MATP纳米棒晶在支撑体表面上平行排布,经干燥和烧结后获得凹凸棒石均孔膜。具体实验步骤如下:

首先将平板状支撑体置于去离子水中煮沸20 min,以去除表面杂质,然后快速取出支撑体并置于平行磁场中 ( 确保支撑体表面水平 ),将不同体积的制膜液缓慢、均匀的滴涂在支撑体表面 ( 操作迅速,确保支撑体表面水分蒸发,支撑体内部依旧保持水分,否则由于毛细管力的作用导致膜层不均匀 ),10 min后去掉平行磁场,静置干燥、烧结,获得成品。

干燥、烧结过程的程序是:对膜层进行预处理:自然晾干12h,放入烘箱70℃保温12h 后温度升至110℃保温 12h。预处理后的支撑体在空气气氛下高温炉中程序升温,升温的程序为:室温下 30min升温至150℃,保温 30min,75min升温至 300℃,保温 30min,350min升温至 650℃保持 180min后自然降温,制备得到磁场导向的磁性凹凸棒石微滤膜(S-MATP-M)。

对照例1

与实施例1和2的区别是:直接采用凹凸棒石作为制膜液的主要原料,涂覆于平板状支撑体的表面,经过干燥、烧结步骤之后,制备得到膜层为凹凸棒石的微滤膜(S-ATP)。

对上述制备的膜层进行性能测试与表征

1.采用扫描电子显微镜(SEM)观察膜层的微观形貌;

实施例1中制备得到的微滤膜的表面结构如图2所示,实施例2中制备得到的微滤膜的表面结构如图3和图4所示;从图中可以看到,实施例2在辅助了磁场条件下制备得到的微滤膜的表面上凹凸棒石呈现出有序排列,而在图1中是随机异向排列,正是有序的排列可以有效提高微滤膜对油水分离过程中去油滴的排斥力、减少油的吸附。

2.采用光学接触角/表界面张力测量仪表征膜层的水接触角和水下油接触角,同时测试其水下油粘附力;

实施例1和实施例2中制备得到的微滤膜的水滴接触角的动态变化过程分别如图5和图6所示,从图中可以看出,由于经过磁场导向制备得到的膜层表面的排序更均一,可以使水滴更快速地在膜表面铺展,在0.08s时即可达到完全铺展,而在图5中第0.08s时仍然有一定量的水滴聚集。

水下油接触角的对比,如图7所示,直接负载凹凸棒石的分离膜(S-ATP),实施例1制备得到的微滤膜(S-MATP)以及实施例2中经过磁场导向后得到的微滤膜(S-MATP-M)的各类油的接触角依次提高,包括二甲基硅油、正己烷、甲苯、机油、二氯甲烷、大豆油。在不同膜的表面的水下油接触角如下所示:

可以看到,采用磁场导向制备得到磁性油水分离膜具有较高的水下油接触角。

水下油粘附力实验结果如图8所示,从图中可以看出,实施例2中制备得到的磁性四氧化三铁微滤膜在水下油滴的附着实验中对油滴的粘附性小,当把微滤膜抬起一定角度后,油滴即向下滚动,说明磁场导向下制备得到的膜表面对油滴的附着效果较低;而实施例1中的微滤膜的表现出一定的附着性,说明磁性四氧化三铁-凹凸棒石材料如果随机分布排列时,对油滴具有一定的附着性。

3.采用煤油和水以及亲油型表面活性剂,进行乳化后,配制成含有1wt%的油水乳化液,在0.10MPa的条件下,采用制备得到的分离膜进行油水分离实验,通过原料和渗透液的COD计算油的截留率;过滤实验15min后,采用去离子水冲洗膜表面,重新检测通量,计算水通量恢复率,得到膜在油水分离过程后的不可逆污染比例。采用S-MATP-M膜的过滤前后的料液照片如图13所示。

油水分离实验的截留率如下表所示:

从表中可以看出,本发明制备得到的微滤膜具有较好的油水分离性能,并且经过了磁场导向后的微滤膜由于凹凸棒石在磁场的作用下,具有力矩的作用,调节了棒状的凹凸棒石的分布方向,使得膜的表面的孔道分布更为均一,提高了其截留效果。

在进行油水过滤实验之后,采用去离子水对膜的表面冲洗5min,重复测试其纯水通量,计算与新膜相比的通量保持率,评价微滤膜对于油水分离过程的抗不可逆污染性能。过滤前后的通量变化如图14所示。

从表中可以看出,本发明的微滤膜在对油水分离过程中,由于其超亲水和水下超疏油的特性,可以有效地避免膜的污染,经过了磁场导向后的磁性微滤膜,由于其表面对油滴的附着力低,可以保持较好的抗不可逆污染性能,具有较高的通量恢复率。MATP-M膜的通量恢复最好 ( 999.95 L/(m2·h) ),MATP膜次之 ( 837.5 L/(m2·h) ),支撑体通量恢复最差 ( 374 L/(m2·h) ),其通量恢复率分别为91.32 %、75.25 %、27.32 %。这是因为膜层具有超亲水/水下超疏油性能,油滴被截留在膜层表面时,油滴与膜层的粘附力基本为0,所以在热水条件下冲洗即可带走膜层表面的油相,所以其通量恢复大,抗油污染性能好。

一种油水分离膜的制备方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部