专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
具有SiV发光的超小晶粒尺寸纳米金刚石薄膜及其制备

具有SiV发光的超小晶粒尺寸纳米金刚石薄膜及其制备

IPC分类号 : C23C16/27,C30B29/04,C30B25/00,B82Y30/00,B82Y40/00,C09K11/65

申请号
CN201610870721.7
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2016-09-30
  • 公开号: 106498363A
  • 公开日: 2017-03-15
  • 主分类号: C23C16/27
  • 专利权人: 浙江工业大学

专利摘要

本发明提供了一种具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其制备方法为:采用微波等离子体化学气相沉积方法,在单晶硅衬底上制备具有SiV发光的纳米金刚石薄膜;采用氧等离子体轰击方法,在微波功率600~1000W,气压0.5~6torr,氧气氮气体积比1:4~6的混合气体等离子体中,对所得纳米金刚石薄膜进行氧等离子体刻蚀处理5~30min,即得产品;本发明方法简单、易于操作,可在一台设备中完成薄膜生长和离子轰击减小晶粒的过程;制备得到的超小尺寸金刚石晶粒粒径分布均匀;金刚石晶粒尺寸小,对纳米金刚石在生物实验方面的应用具有十分重要的科学意义和价值。

权利要求

1.一种具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其特征在于,所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜按如下方法制备得到:

(1)采用微波等离子体化学气相沉积方法,在单晶硅衬底上制备具有SiV发光的纳米金刚石薄膜;

(2)采用氧等离子体轰击方法,在微波功率600~1000W,气压0.5~6torr,氧气氮气体积比1:4~6的混合气体等离子体中,对步骤(1)得到的纳米金刚石薄膜进行氧等离子体刻蚀处理5~30min,即得所述具有SiV发光的超小晶粒尺寸纳米金刚石薄膜。

2.如权利要求1所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其特征在于,所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜中,纳米金刚石晶粒的尺寸在2.5~5nm,并且尺寸分布均匀。

3.如权利要求1所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其特征在于,步骤(1)制得的纳米金刚石薄膜的厚度在1~3μm,薄膜中的晶粒尺寸为6~10nm。

4.如权利要求1所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其特征在于,所述步骤(1)的操作方法为:

(a)预处理:将单晶硅衬底先置于Ti粉、金刚石微粉和丙酮的混合液中超声震荡45min,然后再置于新取的丙酮中超声震荡1min,取出吹干后,再次置于新取的丙酮中超声震荡1min,之后取出干燥,作为纳米金刚石薄膜生长的衬底;

(b)沉积薄膜:将经过步骤(a)预处理的单晶硅衬底放入微波等离子体化学气相沉积设备中,以甲烷和氩气体积比1~2:49的混合气体为反应气体,在400~500℃下反应1h,即在单晶硅衬底表面沉积得到厚度为1~3μm,晶粒尺寸为6~10nm的纳米金刚石薄膜。

5.如权利要求4所述的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,其特征在于,步骤(a)中,所述Ti粉、金刚石微粉和丙酮的混合液中,Ti粉的浓度为0.001~0.005g/mL,金刚石微粉的浓度为0.001~0.005g/mL。

说明书

(一)技术领域

本发明涉及一种具有SiV发光的超小晶粒尺寸纳米金刚石薄膜及其制备方法。

(二)背景技术

纳米金刚石颗粒具有极好的生物相容性,容易进行表面修饰、附加官能团,以及很好的光学稳定性。这样的特性使纳米金刚石颗粒特别适合于生物学上的应用,包括生物细胞的标记和追踪,细胞外药物传输和生物大分子的吸附特性检测。因此金刚石中由于缺陷造成的发光色心显得极其重要(色心是指晶体中由点缺陷、点缺陷对或点缺陷群捕获电子或空穴而构成的一种可导致可见光谱区的光吸收的缺陷,即通过一定方式激发可以使色心发光)。结构越稳定、发光效率越高、空间相干性越好、发光寿命越短的色心越有利于生物标签的应用。相比于其他空位色心,SiV发光色心在这些方面具有更好的性能。同时,越小尺寸的纳米金刚石颗粒越有利于金刚石颗粒进入细胞内部,并且对于细胞内的定位追踪更加准确。因此成功制备具有SiV发光色心的尺寸超小的纳米金刚石晶粒对于纳米金刚石在生物实验中的应用有极大的帮助。

氮空位属于金刚石中一种常见的缺陷,并且含氮空位的纳米金刚石容易制备。已经有较多研究者使用氮空位发光的纳米金刚石进行生物实验研究。在金刚石中,氮空位发光一般有电中性氮空位(NV0)发光中心和电负性氮空位(NV-)发光中心,这两种结构都比较稳定。前者的零声子线发光在575nm处,并且在580~650nm左右有一个较宽的伴随峰。后者的零声子线发光在637nm处,并且在800nm左右有一个伴随峰。这么宽的激发范围导致氮空位发光色心的发光效率低,空间相干性差。另外,有研究者的理论计算结果发现,氮在金刚石中能够稳定存在的最小晶粒尺寸为2nm左右。实验中很难制得该尺寸的氮空位发光缺陷纳米金刚石。目前在生物实验中使用的氮空位发光纳米金刚石颗粒一般在5~10nm。同时氮空位的发光寿命长达25ns。这都限制了氮空位发光纳米金刚石颗粒在生物实验中的应用。SiV发光色心的零声子线在738nm且发光峰很窄(约5nm),发光寿命极短,只有约1.2ns。理论计算表明,纳米金刚石晶粒尺寸为1.1~1.8nm时,SiV发光中心仍然可以稳定存在。2013年在陨石中发现,具有SiV发光中心的晶粒尺寸2nm左右的纳米金刚石晶粒,但还未能在实验上制备晶粒尺寸达到2nm且尺寸均匀的纳米金刚石晶粒。因此,制备具有SiV发光中心的超小尺寸纳米金刚石晶粒是具有可行性的。

(三)发明内容

本发明的目的是提供一种具有SiV发光色心的超小晶粒尺寸纳米金刚石薄膜及其制备方法。

为了制备得到具有SiV发光色心的超小晶粒尺寸纳米金刚石薄膜,本发明使用微波等离子体化学气相沉积在单晶硅片上沉积晶粒尺寸约10nm并且具有SiV发光的纳米金刚石薄膜,再通过氧等离子对薄膜进行刻蚀处理,使金刚石晶粒尺寸逐渐减小,最后制备得到了晶粒尺寸为2.5~5nm,并且具有SiV发光的纳米金刚石薄膜。

为实现上述目的,本发明采用如下技术方案:

一种具有SiV发光的超小晶粒尺寸纳米金刚石薄膜,按如下方法制备得到:

(1)采用微波等离子体化学气相沉积方法,在单晶硅衬底上制备具有SiV发光的纳米金刚石薄膜;

(2)采用氧等离子体(所述的氧等离子体采用微波等离子体化学气相沉积设备来产生)轰击方法,在微波功率600~1000W,气压0.5~6torr,氧气氮气体积比1:4~6的混合气体等离子体中(对金刚石有刻蚀作用的是氧等离子体,氮气的作用是帮助氧气成为等离子体以及减少氧的分压),对步骤(1)得到的纳米金刚石薄膜进行氧等离子体刻蚀处理5~30min,即得所述具有SiV发光的超小晶粒尺寸纳米金刚石薄膜。

按照本发明方法制得的具有SiV发光的超小晶粒尺寸纳米金刚石薄膜中,纳米金刚石晶粒的尺寸在2.5~5nm,并且尺寸分布均匀。

所述步骤(1)中,采用微波等离子体化学气相沉积(MPCVD)法在单晶硅衬底上制备纳米金刚石薄膜,可采用常规微波等离子体化学气相沉积设备进行,步骤(1)制得的纳米金刚石薄膜厚度通常在1~3μm,薄膜中的晶粒尺寸通常为6~10nm。

进一步,所述步骤(1)的操作方法为:

(a)预处理:将单晶硅衬底先置于Ti粉、金刚石微粉和丙酮的混合液中超声震荡45min,然后再置于新取的丙酮中超声震荡1min,取出吹干后,再次置于新取的丙酮中超声震荡1min,之后取出干燥,作为纳米金刚石薄膜生长的衬底;

所述Ti粉、金刚石微粉和丙酮的混合液中,Ti粉的浓度为0.001~0.005g/mL,金刚石微粉的浓度为0.001~0.005g/mL。

(b)沉积薄膜:将经过步骤(a)预处理的单晶硅衬底放入微波等离子体化学气相沉积设备中,以甲烷和氩气体积比1~2:49的混合气体为反应气体,在400~500℃下反应1h,即在单晶硅衬底表面沉积得到厚度为1~3μm,晶粒尺寸为6~10nm的纳米金刚石薄膜。

本发明的有益效果主要体现在:

(1)方法简单、易于操作,可在一台设备中完成薄膜生长和离子轰击减小晶粒的过程;

(2)制备得到的超小尺寸金刚石晶粒粒径分布均匀;

(3)金刚石晶粒尺寸小(2.5~5nm),对纳米金刚石在生物实验(生物标签追踪,药物传输等)方面的应用具有十分重要的科学意义和价值。

(四)附图说明

图1:实施例1中氧等离子体处理10min样品的拉曼谱图;

图2:实施例1中氧等离子体处理10min样品的光致发光谱图;

图3:实施例1中氧等离子体处理10min样品的透射电镜图;

图4:实施例2中氧等离子体处理20min样品的拉曼谱图;

图5:实施例2中氧等离子体处理20min样品的光致发光谱图;

图6:实施例2中氧等离子体处理20min样品的透射电镜图。

(五)具体实施方式

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。

实施例1:

将单晶硅衬底先置于Ti粉(0.1g)、金刚石微粉(0.1g)和丙酮(50mL)的混合液中超声(超声机功率200W)震荡45min,然后再置于新取的丙酮中超声震荡1min,取出吹干后,再次置于新取的丙酮中超声震荡1min,之后取出干燥,作为纳米金刚石薄膜生长的衬底。将经过以上预处理的单晶硅衬底放入微波等离子体化学气相沉积设备(设备为台湾硕傑企业股份有限公司生产,腔体6英寸,型号为IPLAS-CYRANNUS)中,以甲烷和氩气为气源,气体体积比4:196,生长功率1200W,生长气压150torr,生长时间1h,制备出厚度约1μm的纳米金刚石薄膜,晶粒尺寸约10nm。

对生长好的纳米金刚石薄膜进行氧等离子体处理,氧等离子体可用微波等离子体化学气相沉积设备产生。气源为20sccm的氧气和80sccm的氮气,微波功率900W,腔体气压5torr。对薄膜处理10分钟,即得所述具备SiV发光色心的超小尺寸纳米金刚石晶粒的金刚石薄膜。

采用激光波长为532nm的Raman光谱对薄膜成分进行分析,如图1所示。可以看出,谱图中出现了1140,1332,1350,1470和1560cm-1等特征峰,1332cm-1为金刚石特征峰,但在谱图中并不明显,这是由于晶粒尺寸过于细小导致的。1560cm-1为无序sp2键石墨的特征峰,1140和1470cm-1为反式聚乙炔链的特征峰,1350cm-1为sp3键碳团簇的特征峰。说明薄膜主要由金刚石相和无序石墨相组成,但晶界中包含少量其他相,这与通常的纳米金刚石薄膜的可见光Raman特征谱图一致。

对氧等离子体处理后的样品,采用激光波长为532nm的PL光谱对薄膜发光性能进行分析,如图2所示。可以看出,在PL谱图中的738nm位置出现了SiV发光峰,并且在637nm处有氮空位发光峰,但是如之前提到的,氮空位发光峰的峰宽太宽,不适合用于生物标签。这说明我们已经制备得到了具有SiV发光中心得纳米金刚石薄膜。

采用高分辨透射电镜对样品进行微结构分析,如图3所示。可以观察到,氧等离子体处理10分钟样品晶粒大小在4-5nm左右,且晶粒大小分布均匀,对应的选区电子衍射图说明这些晶粒为金刚石晶粒。这说明通过氧等离子体处理10分钟时,我们制备得到了晶粒尺寸在4-5nm的具有SiV发光中心的纳米金刚石薄膜。

实施例2:

将单晶硅衬底先置于Ti粉(0.1g)、金刚石微粉(0.1g)和丙酮(50mL)的混合液中超声(超声机功率200W)震荡45min,然后再置于新取的丙酮中超声震荡1min,取出吹干后,再次置于新取的丙酮中超声震荡1min,之后取出干燥,作为纳米金刚石薄膜生长的衬底。将经过以上预处理的单晶硅衬底放入微波等离子体化学气相沉积设备(设备为台湾硕傑企业股份有限公司生产,腔体6英寸,型号为IPLAS-CYRANNUS)中,以甲烷和氩气为气源,气体体积比4:196,生长功率1200W,生长气压150torr,生长时间1h,制备出厚度约1μm的纳米金刚石薄膜,晶粒尺寸约10nm。

对生长好的纳米金刚石薄膜进行氧等离子体处理,氧等离子体可用微波等离子体化学气相沉积设备产生。气源为20sccm的氧气和80sccm的氮气,微波功率900W,腔体气压5torr。对薄膜处理20分钟,即得所述具备SiV发光色心的超小尺寸纳米金刚石晶粒的金刚石薄膜。

采用激光波长为532nm的Raman光谱对薄膜成分进行分析,如图4所示。可以看出,谱图中出现了1140,1332,1350,1470和1560cm-1等特征峰,1332cm-1为金刚石特征峰,但在谱图中并不明显,这是由于晶粒尺寸过于细小导致的。1560cm-1为无序sp2键石墨的特征峰,1140和1470cm-1为反式聚乙炔链的特征峰,1350cm-1为sp3键碳团簇的特征峰。说明薄膜主要由金刚石相和无序石墨相组成,但晶界中包含少量其他相,这与通常的纳米金刚石薄膜的可见光Raman特征谱图一致。

对氧等离子体处理后的样品,采用激光波长为532nm的PL光谱对薄膜发光性能进行分析,如图5所示。可以看出,在PL谱图中的738nm位置出现了SiV发光峰,这说明我们已经制备得到了具有SiV发光中心得纳米金刚石薄膜。

采用高分辨透射电镜对样品进行微结构分析,如图6所示。可以观察到,氧等离子体处理20分钟样品晶粒大小在2.5-4nm左右,且晶粒大小分布均匀,对应的选区电子衍射图说明这些晶粒为金刚石晶粒。这说明通过氧等离子体处理20分钟时,我们制备得到了晶粒尺寸在2.5-4nm的具有SiV发光中心的纳米金刚石晶粒。

对比例1:

Igor I.Vlasov等人,在10mm*10mm*0.5mm的硅片上,采用微波等离子体化学气相沉积法直接制备小晶粒尺寸纳米金刚石薄膜。气体比例93%Ar/5%H2/2%CH4,生长气压1.2*104Pa,微波功率2.4kW,薄膜厚度1微米。可参考文献Vlasov II,Barnard AS,Ralchenko VG,Lebedev OI,Kanzyuba MV,Saveliev AV,et al.Nanodiamond Photoemitters Based on Strong Narrow-Band Luminescence from Silicon-Vacancy Defects.Advanced materials.2009;21(7):808-12.

采用高分辨透射电镜对薄膜进行微结构表征,样品中确实包含2-5nm大小颗粒,但是晶粒分布集中,不均匀。未能证明薄膜的均匀性。同时,对样品采用激光波长为488nm的Raman光谱测试。对比微晶金刚石薄膜,会发现纳米金刚石薄膜有较强的金刚石峰,这也说明样品中存在尺寸较大的纳米金刚石颗粒,即薄膜中晶粒尺寸分布不均匀。

这说明我们通过先制备5-8nm的均匀纳米金刚石薄膜,然后通过微波等离子体处理减小金刚石颗粒的方法,可以制备超小晶粒尺寸,且晶粒尺寸分布均匀的纳米金刚石薄膜。

具有SiV发光的超小晶粒尺寸纳米金刚石薄膜及其制备专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部