专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
基于金属纳米颗粒增强NaBiO3可见光催化作用的方法

基于金属纳米颗粒增强NaBiO3可见光催化作用的方法

IPC分类号 : B01J23/18,B01J23/644,B01J23/843,B01J33/00,B01J37/02,B01J37/34,B01J37/08,C01B3/04

申请号
CN201711375727.8
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2017-12-19
  • 公开号: 108176391B
  • 公开日: 2018-06-19
  • 主分类号: B01J23/18
  • 专利权人: 浙江大学城市学院

专利摘要

本发明涉及一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,包括NaBiO3单晶的制备、纳米金属结构的制备、纳米金属结构与NaBiO3复合材料的制备;采用热注入法制备金属纳米颗粒;将制备好的各种形貌纳米金属颗粒和结构进行表面处理;用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;同热处理方法制备NaBiO3单晶溶液。本发明的有益效果是:与传统不加任何修饰的NaBiO3光催化材料相比,这种用金属纳米颗粒增强的半导体光催化剂,不仅能够提高可见光吸收的能力和光生电子与空穴的转移能力,而且能抑制光生载流子的复合,从而综合性地提高光催化的效果。

权利要求

1.一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,其特征在于,包括如下步骤:

1).NaBiO3单晶的制备

制备NaBiO3单晶颗粒;其方法:首先,在空气中,以温度250-300℃,在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末;其次,将无水铋酸钠粉末与纯净水等比例混合制成悬浮液,以备后续使用;

2).纳米金属结构的制备

采用热注入法制备金属纳米颗粒;其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种;金属纳米粒子的形状为立方体、领结型、球型或圆柱型中的一种或几种;金属纳米颗粒形状尺寸为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为 40nm~60nm;

3).纳米金属结构与NaBiO3复合材料的制备

在复合材料的制备过程中需要对贵金属纳米结构材料进行钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化;具体的制备步骤如下:

①将制备好的各种形貌纳米金属颗粒和结构进行表面处理

在金属颗粒表面覆盖或包裹一层SiO2薄膜;其方法是:首先、正硅酸四乙酯TEOS在氨NH3的作用下水解生成SiO2和乙醇;第二、将已经制备好的各种形貌的金属纳米结构胶体取出五等份,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水;第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时;第五、反应完成后用乙醇和去离子水洗3遍,分散在乙醇中;所使用的SiO2厚度在2-3nm之间;最后、将SiO2包裹的金属纳米颗粒进行表面修饰;

②用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配;

③用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;

④热处理方法制备NaBiO3单晶溶液;进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液;

⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。

说明书

技术领域

本发明涉及一种增强传统光催化剂作用的方法,更具体说,涉及一种基于金属纳米颗粒增强铋酸钠NaBiO3可见光催化作用以及该复合材料的制备方法。

背景技术

光催化技术在解决能源问题、环境污染问题上具有广泛的应用。光催化技术能够利用光照分解水、降解有机污染物,并且具有无毒无污染、化学性质稳定等优点。目前在各种光催化材料中,二氧化钛TiO2的研究最为广泛。但TiO2材料带隙约为3.2eV,仅能吸收利用波长小于387nm的紫外光,太阳光能量利用率只有4%左右,而到达地面的可见光约占太阳能的45%。因此开发具有可见光乃至红外响应的新型光催化材料,并通过一些方法提高其光催化活性,受到人们广泛关注。

作为一种新型有效的光催化材料,钙钛矿型金属氧化物铋酸钠NaBiO3具有良好的稳定性和较强的氧化能力,且无毒无放射性,对环境无污染,其带隙仅为2.6eV,能够吸收更大范围的可见光,能级位置完全覆盖水分解反应的氧化还原电位,是较为理想的光催化污染物氧化降解和制氢的催化材料。NaBiO3材料光催化分解水制氢气的机制如图1所示:

①在光照条件下,若满足入射光能量大于等于NaBiO3带隙Eg,NaBiO3价带顶部的电子就会被激发而跃迁到导带底部,并在价带顶部留下空穴,产生光生电子-空穴对,即光生载流子。光生载流子的氧化还原能力强弱与材料的能带结构紧密相关:价带位置越低,光生空穴的氧化能力越强;导带位置越高,光生电子的还原能力越强。

②光生电子和空穴从材料内部转移到表面,只有实现有效分离并转移到表面的光生载流子才具有催化活性。与此同时,光生电子与空穴易在材料内部发生复合,并以光和热的形式释放能量,这是不利于光催化反应发生的,需要尽量抑制。

③转移到材料表面的电子和空穴分别具有强还原性和强氧化性,它们与吸附在材料表面的H2O与H+发生氧化还原反应,生成光催化反应的产物O2与H2。其反应方程式如下:

氧化反应

还原反应

总反应

尽管NaBiO3在光催化领域具有很大的潜力,但是要获得具有应用价值的光催化剂,仍需要想方设法提高可见光吸收效率,提高光生载流子的有效分离与转移能力,抑制光生电子-空穴对的复合。

发明内容

本发明的目的是克服现有技术中的不足,提供一种具有高可见光吸收率、分解水以及污染物的新型金属纳米结构与NaBiO3复合材料的制备方法。

一种基于金属纳米颗粒增强NaBiO3可见光催化作用的方法,包括如下步骤:

1).NaBiO3单晶的制备

制备NaBiO3单晶颗粒;其方法:首先,在空气中,以温度250-300℃,在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末;其次,将无水铋酸钠粉末与纯净水等比例混合制成悬浮液,以备后续使用;

2).纳米金属结构的制备

采用热注入法制备金属纳米颗粒;其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种;金属纳米粒子的形状为立方体、领结型、球型或圆柱型中的一种或几种;

3).纳米金属结构与NaBiO3复合材料的制备

在复合材料的制备过程中需要对贵金属纳米结构材料进行必要的钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化;具体的制备步骤如下:

①将制备好的各种形貌纳米金属颗粒和结构进行表面处理

需要在金属颗粒表面覆盖或包裹一层SiO2薄膜;其方法是:首先、在正硅酸四乙酯TEOS在氨NH3的作用下水解SiO2和乙醇;第二、将已经制备好的各种形貌的金属纳米结构胶体取出五等份,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟左右;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水;第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时;第五、反应完成后用乙醇和去离子水洗3遍,分散在乙醇中;所使用的SiO2厚度在2-3nm之间;最后、将SiO2包裹的金属纳米颗粒进行表面修饰;

②用SEM表征金属纳米颗粒的形貌,将获得的样品进行消光系数的测定;需要在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配;

③用光致发光谱PL检测NaBiO3颗粒分散系的荧光发光;

④同热处理方法制备NaBiO3单晶溶液;进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液;

⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。

所述步骤2)中:金属纳米颗粒形状尺寸应为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为 40nm~60nm。

本发明的有益效果是: 所提出的设计方案对是传统NaBiO3材料光催化性能的改进,也就是将金属纳米颗粒结构复合到NaBiO3纳米颗粒中。与传统不加任何修饰的NaBiO3光催化材料相比,这种用金属纳米颗粒增强的半导体光催化剂,不仅能够提高可见光吸收的能力和光生电子与空穴的转移能力,而且能抑制光生载流子的复合,从而综合性地提高光催化的效果。该发明可以为实现高效率、低成本的可见光催化制氢气、降解污染物提供可靠实用的催化材料和方法。

附图说明

图1 是NaBiO3材料光催化分解水制氢气机制。

图2 是本发明中用金属纳米颗粒增强的NaBiO3材料光催化分解水制氢气机制。

图3 是用采用热注入法获得的金属纳米颗粒(SEM图)。

图4 是金属纳米颗粒的SiO2薄膜厚度与反应量关系图。

图5 是不同形状金属纳米颗粒的吸收光谱与NaBiO3发光光谱。

图6 是复合材料光催化制氢反应示意图。

具体实施方式

下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

本发明目的是通过金属纳米颗粒具有的等离子体共振效应、强烈的可见光吸收能力以及有效的能量转换和载流子转移能力来提高NaBiO3的催化效率,解决目前NaBiO3催化效率不高的问题。由此提出一种具有高可见光吸收率、分解水以及污染物的新型金属纳米结构与NaBiO3复合材料的制备方法。

该复合材料光催化分解水制氢气的机制如图2所示:

①外界光照射到金属纳米颗粒上产生LSPR效应,引起强烈的自由电子集体谐振,从而在金属和NaBiO3的接触面附近产生局域表面等离子共振效应。在此区域,表面等离子激元(SPE)将振荡能量传递给NaBiO3价带电子使其跃迁到导带,形成在半导体表面附近的电子-空穴对。产生共振增强的关键是金属纳米等离子体的共振频率要与NaBiO3的带隙能级相当。可以通过调节金属纳米颗粒的材料、尺寸以及形貌,可以使其的共振光谱与NaBiO3的吸收光谱接近。

②由于金属颗粒上具有大量电子,有利于俘获价带的光生空穴,同时抑制光生电子转移并把它们留在NaBiO3中,从而有效抑制光生载流子的复合。

③被俘获的光生空穴具有强氧化性,在金属纳米颗粒表面将水分子氧化为O2随后消失。而留在NaBiO3中的大量光生电子生来就靠近表面,因而能够有效地转移到半导体表面,在这里,具有强还原性的光生电子易于将与表面接触的氢离子还原,产生光催化反应的产物H2。

发明内容为具有一定结构的贵金属金属纳米与NaBiO3单晶复合材料的制备:

1.NaBiO3单晶的制备

制备具有一定大小的NaBiO3单晶颗粒。其方法:首先,在空气中,以一定温度(一般250-300℃),在手套箱中通入氮气,对二水铋酸钠NaBiO3·2H2O加热,持续时间为3-4个小时,获得无水铋酸钠粉末。其次,将粉末与纯净水等比例混合制成悬浮液,以备后续使用。

2.纳米金属结构的制备

采用热注入法制备金属纳米颗粒。其中金属纳米颗粒为Ag、Au或Cu纳米颗粒中的一种。金属纳米粒子的形状可以为立方体、领结型、球型或是圆柱型中的一种或几种,如图3所示。可以通过finite-difference time-domain(FDTD) 算法计算金属纳米等离子的消光光谱。本专利以纳米银颗粒来说明金属纳米颗粒与NaBiO3复合材料的对水的催化效率作用机制。

3. 纳米金属结构与NaBiO3复合材料的制备

在复合材料的制备过程中需要对贵金属纳米结构材料进行必要的钝化处理,形成一定的保护层,使得纳米金属与NaBiO3晶体之间进行有效的能量转移,防止金属材料的表面氧化。具体的制备步骤如下:

①将制备好的各种形貌纳米金属颗粒和结构进行表面处理

需要在金属颗粒表面覆盖或包裹一层SiO2薄膜。其方法是,首先、在正硅酸四乙酯(TEOS)在氨(NH3)的作用下水解SiO2和乙醇;第二,将已经制备好的各种形貌的金属纳米结构胶体取出五等份,取其中一份将其加入到一定浓度的异丙醇中,超声分散25-35分钟左右;第三、将上面溶液用温控仪加热至40℃,反应一定时间后,依次加入氨水和去离子水。第四、等待3-5分钟,温度稳定在40℃后,加入TEOS,反应时间为4小时。第五、反应完成后用乙醇和去离子水洗3遍,分散在乙醇中。通过大量的实验表明改变与TEOS、NH3和去离子水的大小可以调节纳米颗粒的包裹的厚度。加入反应物的量与金属纳米颗粒包裹的厚度如图4所示。所使用的SiO2厚度一般在2-3nm之间。最后、将SiO2包裹的金属纳米颗粒进行表面修饰。

②用SEM表征金属纳米颗粒的形貌(图3),将获得的样品进行消光系数的测定。一般情况下,需要在制备之前计算金属纳米颗粒的消光系数,通过设计金属颗粒的大小和形貌使得其消光光谱与NaBiO3发光光谱相匹配,如图5中的黑色曲线。

③用光致发光谱(PL)检测NaBiO3颗粒分散系的荧光发光,实验测得的荧光发光曲线如图5红色曲线所示。

④同热处理方法制备NaBiO3单晶溶液。进行表面修饰,将制备好的NaBiO3单晶溶液甲苯中,加热至一定温度,在甲醇中进行离心获得胶体溶液。

⑤将包裹SiO2的纳米金属溶液与NaBiO3胶体溶液进行混合搅拌,经过脱水缩合反应获得复合材料结构。

通过上述步骤,最终获得具有高催化效率的复合材料。

4.复合材料的制备过程中,要有效提高催化效率,金属纳米颗粒的大小、形状、颗粒间的距离的调控是关键。为了使得金属纳米颗粒的消光光谱与NaBiO3的荧光光谱相匹配的时候,提高有机物降解和水的分解效率,金属纳米颗粒形状尺寸应为:圆柱体的半径为40nm~80nm,高为30nm~50nm;立方体的边长为40nm~120nm;三角锥底边长为60nm~120nm,高为 40nm~60nm。

如图5所示,理论计算结果表明:对于领结型的纳米银颗粒,当其尖角为20°、厚度为50nm时,消光光谱比较接近NaBiO3发光光谱;对于立方体纳米银颗粒,当其边长为60nm时,消光光谱比较接近NaBiO3发光光谱;对于圆柱形的纳米银颗粒,当其高度为50nm,半径为50nm时,消光光谱比较接近NaBiO3发光光谱。以这些参数进行制备银纳米金属颗粒(如图3所示)。

金属纳米颗粒增强NaBiO3复合材料光催化分解水制氢的实验验证如图6所示。图中a是卤钨灯,b是截止滤光片,c是反应容器,d是电磁搅拌器,f是排水法收集气体的倒置玻璃量管,e是进水管,g是散热风扇。

首先将45mg复合催化材料放入装有22.5 mL体积比1:2的异丙醇水溶液的反应容器中分散,以异丙醇作为阳极反应物。然后向反应容器中通入氮气30分钟以除去溶解气体,并在黑暗条件下开启磁力搅拌机以建立吸附平衡。随后用500W卤钨灯通过截止滤光片( )照射反应容器,同时打开功率为50W的风扇以维持环境温度。反应生成的气体通入倒置的装满水的玻璃量管,采用排水法收集,在标准大气压下测量体积。最后采用气相色谱仪对收集到的气体进行分析。在环境温度和一个标准大气压下,产生可观测到的气泡。测量结果表明,传统NaBiO3的产氢率大约在3.2 mL/h 左右,而金属纳米颗粒增强NaBiO3复合材料的产氢率大约在21.0 mL/h。可见与没有金属纳米颗粒相比较,金属纳米颗粒与NaBiO3相结合的材料其催化效率可以显著增加。

基于金属纳米颗粒增强NaBiO3可见光催化作用的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部