专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种玉米醇溶蛋白纳米纤维的制备方法

一种玉米醇溶蛋白纳米纤维的制备方法

IPC分类号 : D01F4/00

申请号
CN201910130896.8
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2019-02-22
  • 公开号: 109797447B
  • 公开日: 2019-05-24
  • 主分类号: D01F4/00
  • 专利权人: 上海交通大学

专利摘要

本发明公开了一种玉米醇溶蛋白纳米纤维的制备方法,属于蛋白纳米纤维技术领域。所述玉米醇溶蛋白纳米纤维的制备方法为:将玉米醇溶蛋白溶于冰乙酸中,置于40~80℃的水浴中加热5~120min,得到玉米醇溶蛋白乙酸溶液;将4~15℃去离子水滴入40~80℃的玉米醇溶蛋白乙酸溶液中,得到玉米醇溶蛋白乙酸水溶液;将玉米醇溶蛋白乙酸水溶液真空冷冻干燥,得到玉米醇溶蛋白纳米纤维。电镜结果表明,该纤维呈细丝状,直径为50‑300nm,纤维间互相交联形成三位网络结构。本方法低耗节能、工艺简单、易于操作、便于工业化生产,本发明还为玉米醇溶蛋白纤维在面团特性改良、仿生肉制品中的应用奠定技术基础。

权利要求

1.一种玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述玉米醇溶蛋白纳米纤维的制备方法为:将玉米醇溶蛋白溶于冰乙酸中,置于40~80℃的水浴中加热5~120 min,得到玉米醇溶蛋白乙酸溶液;将4~15℃去离子水滴入40~80℃的玉米醇溶蛋白乙酸溶液中,得到玉米醇溶蛋白乙酸水溶液;将玉米醇溶蛋白乙酸水溶液真空冷冻干燥,得到玉米醇溶蛋白纳米纤维。

2.根据权利要求1所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述玉米醇溶蛋白在冰乙酸中的浓度为0.1~10 wt %。

3.根据权利要求1所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述真空冷冻干燥的条件为:预冷时间4~12h,预冷温度为-40 ~-60°C,冷冻干燥时间为24~72h,真空度为10~40pa。

4.根据权利要求1所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为5:1~1000:1。

5.根据权利要求1所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述玉米醇溶蛋白为α-玉米醇溶蛋白。

6.根据权利要求5所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述α-玉米醇溶蛋白的提取方法为:

将玉米醇溶蛋白溶于体积百分比为85~95%乙醇水溶液中,涡旋使其完全溶解,置于4±1℃的条件下放置;并低温离心处理;取低温离心后的上清液,并保持4±1℃;

在低温离心后的上清液中滴加15±1℃的去离子水, 完全混合后于15±1℃下二次离心处理;

将二次离心处理后的沉淀物通过真空冷冻干燥后得到α-玉米醇溶蛋白。

7.根据权利要求6所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述低温离心处理和二次离心处理均采用8000~12000 g的离心力离心处理20~40 min。

8.根据权利要求6所述的玉米醇溶蛋白纳米纤维的制备方法,其特征在于:所述真空冷冻干燥的条件为:预冷时间4~12h,预冷温度为-40 ~-60°C,冷冻干燥时间为24~72h,真空度为10~40pa。

说明书

技术领域

本发明属于蛋白纳米纤维技术领域,具体涉及一种玉米醇溶蛋白纳米纤维的制备方法。

背景技术

玉米醇溶蛋白是从玉米淀粉加工副产物中提取得到的天然蛋白质,是玉米副产物综合开发利用高附加值产品中的一种。与小麦蛋白不同,玉米醇溶蛋白为非致敏性蛋白,且具有独特自组装特性、成膜性、生物相容性和可降解性,是公认为安全的食品级原料。玉米醇溶蛋白含50%以上非极性氨基酸,疏水性强,不溶于纯水或纯醇,可溶于60%~95% (v/v)乙醇水溶液。目前有关玉米醇溶蛋白的研究集中于在乙醇水溶液中通过反溶剂沉淀法制备球形纳米颗粒,常用于构建生物活性物质的递送载体和乳液的颗粒稳定剂等。

分子自组装是结构单元在一定条件下通过非共价相互作用自发形成具有特定结构与功能聚集体的过程。以蛋白质为结构单元通过分子自组装可形成高度有序的纤维结构。目前对少数病原性蛋白质自组装形成纤维(淀粉样纤维)机理进行了系统、深入研究。一些水溶性食源性蛋白质同样也能聚集形成纤维状结构,如β-乳球蛋白、卵白蛋白、牛血清白蛋白、大豆蛋白等,通常在低pH 值和低离子强度条件下,在变性温度以上通过加热自组装形成纤维结构。玉米醇溶蛋白乙醇水溶液通过静电纺丝法可制备玉米醇溶蛋白纤维,具有优异的物理机械性能,常用作生物膜材料、组织工程支架等生物医学材料和体外可再生高性能丝素纤维材料领域具有良好的应用前景。然而,静电纺丝法需采用专属仪器设备,工艺较复杂,纺丝效果易受电压值、纺丝距离和注射泵推进速度、纺丝环境温度和湿度等的影响。如何基于分子自组装纤维化机制为玉米醇溶蛋白纳米纤维的制备构建一种工艺简单、易于操作的新方法是目前亟需解决的问题。

乙酸是从玉米黄粉中提取玉米醇溶蛋白的常用试剂,与乙醇水溶液相比,玉米醇溶蛋白在乙酸中具有更好的溶解性,分子链完全伸展,以单体形式存在。玉米醇溶蛋白由于强疏水性,在水中溶胀性差,无法形成面团。现有研究指出,玉米醇溶蛋白溶于乙酸后经搅拌、揉捏可形成具有网络结构的粘弹性面团。然而,研究人员诸多集中于在宏观水平上改善玉米醇溶蛋白的面团流变学特性,而忽略了玉米醇溶蛋白纤维。

发明内容

本发明先是将市售玉米醇溶蛋白提纯得到高纯度α-玉米醇溶蛋白,探究了其在不同乙酸水溶液中的溶解性,后期根据玉米醇溶蛋白溶于乙酸水溶液的溶解特性,基于分子工程原理,采用自上而下的分子自组装方法,提出了一种全新的利用乙酸和水溶液及温度变化来制备玉米醇溶蛋白纳米纤维的方法,所述玉米醇溶蛋白纳米纤维的制备方法为:将玉米醇溶蛋白溶于冰乙酸中,置于40~80℃的水浴中加热5~120 min,得到玉米醇溶蛋白乙酸溶液;将4~15℃去离子水滴入40~80℃的玉米醇溶蛋白乙酸溶液中,得到玉米醇溶蛋白乙酸水溶液;将玉米醇溶蛋白乙酸水溶液真空冷冻干燥,得到玉米醇溶蛋白纳米纤维。

进一步的,所述玉米醇溶蛋白和冰乙酸的混合比例为:0.1~10 wt %。

进一步的,所述真空冷冻干燥的条件为:预冷时间4~12h,预冷温度为-40 ~-60°C,冷冻干燥时间为24~72h,真空度为10~40pa。

进一步的,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为5:1~1000:1。

进一步的,所述玉米醇溶蛋白或为α-玉米醇溶蛋白。

进一步的,所述α-玉米醇溶蛋白的提取方法为:

将玉米醇溶蛋白溶于85~95% (v/v)乙醇水溶液中,涡旋使其完全溶解,置于4±1℃的条件下放置;并低温离心处理;取低温离心后的上清液,并保持4±1℃;

在低温离心后的上清液中滴加15±1℃的去离子水, 完全混合后于15±1℃下二次离心处理;

将二次离心处理后的沉淀物通过真空冷冻干燥后得到α-玉米醇溶蛋白。

其中,所述低温离心处理和二次离心处理均采用8000~12000 g的离心力离心处理20~40 min。所述真空冷冻干燥的条件为:预冷时间4~12h,预冷温度为-40 ~-60°C,冷冻干燥时间为24~72h,真空度为10~40pa。

有益效果

发明人首先将市售玉米醇溶蛋白提纯得到高纯度α-玉米醇溶蛋白,探究了其在不同乙酸水溶液中的溶解性。玉米醇溶蛋白在10%和20%乙酸水溶液中不能完全溶解,而在30%及以上浓度乙酸水溶液,溶解性良好,且随着乙酸浓度增加,肉眼可见玉米醇溶蛋白溶液越清澈透亮,具体见图1所示。

本发明通过观察玉米醇溶蛋白乙酸溶液中的形态,发现在乙酸溶液中的形态与在乙醇水溶液中形成球形玉米醇溶蛋白纳米颗粒不同,具体见图2所示,玉米醇溶蛋白在乙酸水溶液中可通过分子自组装形成相互交联的细丝状纳米纤维,改变玉米醇溶蛋白浓度和乙酸浓度等实验参数,其形貌与尺寸也随之发生改变,具体见图3、4所示。AFM结果也证实本发明提供的方法成功的制备了玉米醇溶蛋白纳米纤维,具体见图5所示。实验结果表明,本发明提出的在乙酸水溶液中构建热溶冷反法制备的玉米醇溶蛋白纤维是具有可行性和实用性的。

本发明根据玉米醇溶蛋白溶于乙酸水溶液的溶解特性,基于分子工程原理,采用自上而下的分子自组装方法,通过改变实验参数如乙酸浓度、玉米醇溶蛋白浓度、热处理时间和温度、离子强度、搅拌速率、滴加顺序等,调节玉米醇溶蛋白亲/疏水特性,调控分子内/分子间微观相互作用力的竞争与平衡,揭示玉米醇溶蛋白纤维化分子机制。同时,结合其玻璃化转变特征,构建了热溶冷反法用于制备玉米醇溶蛋白纳米纤维。解析玉米醇溶蛋白纤维化分子机制可为制备结构多样、功能丰富的新型食品配料提供重要技术手段。同时,玉米醇溶蛋白纳米纤维有望成为新一代功能性食品配料应用于食品工业,丰富现有食品配料品种。此外,与静电纺丝法对比,本发明不仅低耗节能、工艺简单、易于操作、便于工业化生产,而且为玉米醇溶蛋白纤维在面团特性改良、仿生肉制品中的应用奠定技术基础。

附图说明:

图1:α-玉米醇溶蛋白在乙酸水溶液中的溶解特性图。

图2:玉米醇溶蛋白纳米颗粒的扫描电镜图。

图3:玉米醇溶蛋白和冰乙酸的混合比例为1.0wt%,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为5:1时纳米纤维的扫描电镜图。

图4:玉米醇溶蛋白和冰乙酸的混合比例为1.0wt%,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为10:1时纳米纤维的扫描电镜图。

图5:玉米醇溶蛋白和冰乙酸的混合比例为1.0wt%,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为100:1时纳米纤维的原子力显微镜图。

具体实施方式

下面结合具体实施例子进一步阐明本发明,应理解这些实施例仅用于说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域的技术人员对本发明各种等价形式的修改均落于本申请所附权利要求所规定的范围。

本发明中,玉米醇溶蛋白购买自Sigma,CAS号:9010-66-6,其他所用到的试剂均为食品级。

实施例1

一种α-玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)用分析天平称取市售玉米醇溶蛋白 5.0 g溶于20 mL 90% (v/v)乙醇水溶液中,涡旋使其完全溶解,然后置于4±1℃的条件下放置12h。

b)通过低温冷冻离心机于4±1℃下采用10000 g的离心力对步骤a放置12h后的溶液离心处理20 min。

c)取上述离心后的上清液分装于离心管中,保持离心管的温度为4±1℃,随后在离心管中滴加15±1℃的去离子水, 然后于15±1℃下采用10000 g的离心力二次离心处理20min。

d)最后将上述离心后的沉淀通过真空冷冻干燥后得到高纯度的α-玉米醇溶蛋白,其中,真空冷冻干燥的条件为:预冷时间4h,预冷温度为-40°C,冷冻干燥时间为24h,真空度为10pa。

e)按照0.1 wt %的比例将α-玉米醇溶蛋白溶于冰乙酸中,置于40℃水浴加热5min,得到α-玉米醇溶蛋白乙酸溶液。

f)将4℃去离子水滴入40℃的α-玉米醇溶蛋白乙酸溶液中,得到α-玉米醇溶蛋白乙酸水溶液,其中,去离子水与α-玉米醇溶蛋白乙酸溶液的混合体积比为5:1。

g)将步骤f中得到的玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间4h,预冷温度为-40°C,冷冻干燥时间为24h,真空度为10pa,即得到α-玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。与常用于制备玉米醇溶蛋白纤维的静电纺丝法相比,本方法低耗节能、工艺简单、易于操作、便于工业化生产,不仅为玉米醇溶蛋白纳米纤维的制备构建了新方法,还为玉米醇溶蛋白纤维在面团特性改良、仿生肉制品中的应用奠定技术基础。

实施例2

一种α-玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)用分析天平称取市售玉米醇溶蛋白 1.0g溶于5mL 90% (v/v)乙醇水溶液中,涡旋使其完全溶解,然后置于4±1℃的条件下放置4h。

b)通过低温冷冻离心机于4±1℃下采用8000 g的离心力对步骤a放置4h后的溶液离心处理40 min。

c)取上述离心后的上清液分装于离心管中,保持离心管的温度为4±1℃,随后在离心管中滴加15±1℃的去离子水, 然后于15±1℃下采用8000 g的离心力二次离心处理40 min。

d)最后将上述离心后的沉淀通过真空冷冻干燥后得到高纯度的α-玉米醇溶蛋白,其中,真空冷冻干燥的条件为:预冷时间12h,预冷温度为-60°C,冷冻干燥时间为72h,真空度为40pa。

e)按照1.0wt %的比例将α-玉米醇溶蛋白溶于冰乙酸中,置于80℃水浴加热120 min,得到α-玉米醇溶蛋白乙酸溶液。

f)将15℃去离子水滴入80℃的α-玉米醇溶蛋白乙酸溶液中,得到α-玉米醇溶蛋白乙酸水溶液,其中,去离子水与α-玉米醇溶蛋白乙酸溶液的混合体积比为10:1。

g)将步骤f中得到的玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间12h,预冷温度为-60°C,冷冻干燥时间为72h,真空度为40pa,即得到α-玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。

实施例3

一种α-玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)用分析天平称取市售玉米醇溶蛋白 3.0 g溶于20 mL 90% (v/v)乙醇水溶液中,涡旋使其完全溶解,然后置于4±1℃的条件下放置10h。

b)通过低温冷冻离心机于4±1℃下采用12000 g的离心力对步骤a放置10h后的溶液离心处理30 min。

c)取上述离心后的上清液分装于离心管中,保持离心管的温度为4±1℃,随后在离心管中滴加15±1℃的去离子水, 然后于15±1℃下采用12000 g的离心力二次离心处理30 min。

d)最后将上述离心后的沉淀通过真空冷冻干燥后得到高纯度的α-玉米醇溶蛋白,其中,真空冷冻干燥的条件为:预冷时间10h,预冷温度为-50°C,冷冻干燥时间为48h,真空度为30pa。

e)按照5.0wt %的比例将α-玉米醇溶蛋白溶于冰乙酸中,置于60℃水浴加热80 min,得到α-玉米醇溶蛋白乙酸溶液。

f) 将12℃去离子水滴入60℃的α-玉米醇溶蛋白乙酸溶液中,得到α-玉米醇溶蛋白乙酸水溶液,其中,去离子水与α-玉米醇溶蛋白乙酸溶液的混合体积比为20:1。

g)将步骤f中得到的玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间10h,预冷温度为-50°C,冷冻干燥时间为36h,真空度为30pa,即得到α-玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。

实施例4

一种玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)按照5.0wt %的比例将玉米醇溶蛋白溶于冰乙酸中,置于60℃水浴加热80 min,得到玉米醇溶蛋白乙酸溶液。

b)将10℃去离子水滴入50℃的玉米醇溶蛋白乙酸溶液中,其中,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为100:1,得到玉米醇溶蛋白乙酸水溶液。

c)将玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间10h,预冷温度为-50°C,冷冻干燥时间为36h,真空度为30pa,即得到玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。

实施例5

一种玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)按照1.0wt %的比例将玉米醇溶蛋白溶于冰乙酸中,置于80℃水浴加热5 min,得到玉米醇溶蛋白乙酸溶液。

b)将4℃去离子水滴入80℃的玉米醇溶蛋白乙酸溶液中,其中,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为1000:1,得到玉米醇溶蛋白乙酸水溶液。

c)将玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间4h,预冷温度为-60°C,冷冻干燥时间为24h,真空度为40pa,即得到玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。

实施例6

一种玉米醇溶蛋白纳米纤维的制备方法,所述制备方法包括如下步骤:

a)按照10wt %的比例将玉米醇溶蛋白溶于冰乙酸中,置于60℃水浴加热80 min,得到玉米醇溶蛋白乙酸溶液。

b)将15℃去离子水滴入50℃的玉米醇溶蛋白乙酸溶液中,其中,去离子水与玉米醇溶蛋白乙酸溶液的混合体积比为100:1,得到玉米醇溶蛋白乙酸水溶液。

c)将玉米醇溶蛋白乙酸水溶液进行真空冷冻干燥,其中,所述真空冷冻干燥的条件为:预冷时间12h,预冷温度为-40°C,冷冻干燥时间为72h,真空度为10pa,即得到玉米醇溶蛋白纳米纤维。

扫描电镜结果表明,该纤维呈细丝状,直径为50~300 nm,纤维间互相交联形成三位网络结构。

一种玉米醇溶蛋白纳米纤维的制备方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部