专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法

一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法

IPC分类号 : C08J3/075I,C08L33/24I,C08L3/04I,C08L35/00I,C08F122/38I,C08F4/04I,A61L27/26I,A61L27/50I,A61L27/52I,A61K9/06I,A61K9/00I,A61K47/32I,A61K47/36I

申请号
CN201910409511.1
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2019-05-17
  • 公开号: 110092920B
  • 公开日: 2019-08-06
  • 主分类号: C08J3/075I
  • 专利权人: 北京化工大学

专利摘要

本发明公开了一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法,属于生物医用材料技术领域。该方法具体为:首先将甘氨酰胺盐酸盐与丙烯酰氯反应得到N‑丙烯酰基甘氨酰胺,记为NAGA;再通过引发剂引发自由基聚合得到聚合物PNAGA,提纯干燥;然后配制聚合物PNAGA水溶液;再将醛化多糖与肼化物分别溶解在聚合物PNAGA水溶液中,最后将两种复合水溶液通过双针筒注射器注射后原位形成水凝胶。经PNAGA补强后的水凝胶强度提升显著,该类水凝胶可作为组织工程支架材料或水溶性药物的载体材料,有望应用于生物医用领域。

权利要求

1.一种PNAGA增强醛肼交联型可注射水凝胶的制备方法,其特征在于,该制备方法为:通过引发剂引发NAGA在水中进行自由基聚合制得聚合物PNAGA,提纯干燥;然后配制聚合物PNAGA水溶液;再将醛化多糖与肼化物分别溶解在聚合物PNAGA水溶液中,最后将两种复合水溶液通过双针筒注射器注射后原位形成水凝胶;

所述的NAGA是由甘氨酰胺盐酸盐与丙烯酰氯反应得到N-丙烯酰基甘氨酰胺,记为NAGA;

所述的配制聚合物PNAGA水溶液的方法为:将聚合物PNAGA溶于水中并在90-100℃下加热溶解12-30h,聚合物PNAGA的浓度为0.001 -2wt %。

2.根据权利要求1所述的制备方法,其特征在于,所述的NAGA 在水中的质量分数为1-3%。

3.根据权利要求1所述的制备方法,其特征在于,所述的聚合物PNAGA的制备方法的具体步骤为:配制质量浓度为1-3%的NAGA水溶液,通入氮气排除体系中的氧气,之后加入引发剂引发自由基聚合,反应时间为1-30 min,随后加入无水甲醇使产物沉淀,离心过滤,甲醇洗涤提纯,真空干燥得到白色粉末即为聚合物PNAGA。

4.根据权利要求1所述的制备方法,其特征在于,所述的引发剂选自偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、过硫酸铵、过硫酸钾中的一种或几种,引发剂的用量为NAGA质量的0.5 % -10 %,引发温度为45-70 ℃。

5.根据权利要求1所述的制备方法,其特征在于,所述的肼化物为P(NIPAM-co-AA)-hdz。

6.根据权利要求1所述的制备方法,其特征在于,所述的醛化多糖为醛化糊精。

7.根据权利要求1所述的方法制备得到的PNAGA增强醛肼交联型可注射水凝胶,其特征在于,所述水凝胶的储存方法为:将PNAGA增强醛肼交联型可注射水凝胶注入到模具之中,将模具置于30-40℃的烘箱之中固化成型后取出。

8.根据权利要求1-6任一所述的方法制备得到的PNAGA增强醛肼交联型可注射水凝胶作为组织工程支架材料或水溶性药物的载体材料的应用。

说明书

技术领域

本发明属于生物医用材料技术领域,特别涉及一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法。

背景技术

水凝胶在外用医疗材料、组织工程支架、生物传感、药物传输与载体等领域具有广泛的应用。聚(N-异丙基丙烯酰胺)(PNIPAM)由于聚合物链上存在亲水和疏水基团,对温度有很好地敏感响应性,其临界相转变温度(LCST)在32℃左右与人体体温相近,在生物智能材料领域具有广泛的应用前景。醛肼交联注射型PNIPAM水凝胶通过醛基和肼基在室温下快速发生交联反应制得,但由于反应时间短,形成的腙键共价键网络存在缺陷,导致水凝胶的力学性能较差。在水凝胶中引入淀粉纳米粒子,制备的纳米复合PNIPAM水凝胶(石淑先,李珊珊,夏宇正,et al.一种纳米淀粉粒子补强的醛肼交联型可注射PNIPAM水凝胶的制备方法:中国,20161115097.9[P].2017-06-13.)的凝胶强度虽可提高,但淀粉纳米粒子在微生物的作用下易腐败变质,限制了其潜在应用。

氢键是一种非常重要的分子间作用力,在许多生物和化学体系中有着不可替代的作用。利用聚合物之间的协同氢键作用可获得高强度的水凝胶(Gong J P,Katsuyama Y,Kurokawa T,et al.Double ㎞ etwork Hydrogels with Extremely High MechanicalStrength[J].Advanced Materials,2003,15(14):1155-1158.Mati I K,Cockroft SL.Molecular balances for quantifying non-covalent interactions[J].ChemicalSociety Reviews,2010,39(11):4195.),凝胶中均匀分布的柔性物理交联位点及它们之间的长聚合物链使凝胶能有效地分散施加的载荷。

氢键作用增强方式不仅简单高效,而且无需添加额外的交联剂,生物毒性低,特别适用于生物材料的制备。N-丙烯酰基甘氨酰胺(NAGA)在没有任何化学交联剂的情况下,其水溶液经光引发聚合可以形成超分子聚(N-丙烯酰基甘氨酰胺)(PNAGA)水凝胶,表现出了优异的机械性能,这是由其内部双酰胺氢键合微区域增强所致,使其水凝胶在水中具有高稳定性。但是NAGA溶液聚合制备PNAGA一般使用过硫酸盐等热引发剂引发聚合,存在反应时间长、用量大等缺点。PNAGA与醛肼交联的聚(N-异丙基丙烯酰胺)(PNIPAM)化学结构相似,而且还具有良好的生物相容性,将其引入PNIPAM水凝胶体系,通过醛肼化学交联和多重氢键交联,增加交联点的数量,从而提高凝胶强度。但是PNAGA水溶液由于氢键作用在常温下表现为凝胶状态,无法和醛肼交联型PNIPAM实现室温注射成型;只有升高温度至90℃以上,才可使PNAGA水凝胶中的氢键破坏使其形成水溶液,但是温敏型的PNIPAM分子链(LCST=32℃)在此高温下是蜷缩状态,因此也无法和PGANA共混形成均匀的交联网络,而这也失去了醛肼交联型PNIPAM水凝胶的室温注射成型特性。本发明在AIBA引发(催化效率高,分解速率常数小,聚合恒速聚合,过程不会改变pH,不含腈基,且分解产物无毒本)下,通过NAGA在水溶液中进行自由基聚合制得PNAGA,调节PNAGA水溶液的浓度,保证其在室温下的溶解状态,并分别将其与醛化多糖和肼化的PNIPAM混合,成功通过室温共注射,原位制备了PNAGA增强的PNIPAM基温敏水凝胶,凝胶强度可提高至5.6倍。

发明内容

本发明提供了一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法。经PNAGA补强后的水凝胶强度提升显著。

所述的PNAGA增强醛肼交联型可注射水凝胶的制备方法为:通过引发剂引发NAGA在水中进行自由基聚合制得聚合物PNAGA,提纯干燥;然后配制聚合物PNAGA水溶液;再将醛化多糖与肼化物分别溶解在聚合物PNAGA水溶液中,最后将两种复合水溶液通过双针筒注射器注射后原位形成水凝胶。

所述的NAGA是由甘氨酰胺盐酸盐与丙烯酰氯反应得到N-丙烯酰基甘氨酰胺,记为NAGA。

所述的NAGA在水中的质量分数为1-3%。

所述的聚合物PNAGA的制备方法的具体步骤为:配制质量浓度为1-3%的NAGA水溶液,通入氮气排除体系中的氧气,之后加入引发剂引发自由基聚合,反应时间为1-30min,随后加入无水甲醇使产物沉淀,离心过滤,甲醇洗涤提纯,真空干燥得到白色粉末即为聚合物PNAGA。

所述的引发剂选自偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉、过硫酸铵、过硫酸钾中的一种或几种,引发剂的用量为NAGA质量的0.5%-10%,引发温度为45-70℃。

所述的配制聚合物PNAGA水溶液的方法为:将聚合物PNAGA溶于水中并在90-100℃下加热溶解12-30h,聚合物PNAGA的浓度为0.001-2wt%。

所述的肼化物为P(NIPAM-co-AA)-hdz。

所述的醛化多糖为醛化糊精。

所述的PNAGA增强醛肼交联型可注射水凝胶的储存方法为:将上述制得的PNAGA增强醛肼交联型可注射水凝胶注入到模具之中,将模具置于30-40℃的烘箱之中固化成型后取出。

将上述制得的PNAGA增强醛肼交联型可注射水凝胶作为组织工程支架材料或水溶性药物的载体材料的应用。

本发明结合了PNAGA的优异的机械性能和醛肼交联反应室温快速交联成型和醛肼交联形成腙键的可注射等特点,得到一种机械强度强,温度敏感性高,具有解交联特性的可注射PNIPAM复合水凝胶,在生物医药方面具有良好的应用前景。

附图说明

图1为实施例1制备的水凝胶断面的扫描电镜图:(a)醛肼交联型水凝胶;(b)PNAGA增强醛肼交联型水凝胶;

图2为实施例1制备的醛肼交联水凝胶的动态模量;

图3为图为实施例3制备的PNAGA增强醛肼交联型水凝胶的药物缓释曲线。

具体实施方式

下面结合具体实施和附图说明进一步说明技术实现方案:

实施例1

(1)PNAGA水溶液的制备:将1.0g单体NAGA溶解于5.0g去离子水中形成质量分数为2%的NAGA溶液,通入氮气30min排除体系中的氧气,之后加入引发剂AIBA在60℃引发聚合,反应时间为30min得到聚合物浊液,随后加入无水甲醇使产物沉淀,然后5000r/min的条件下离心30min,过滤并用甲醇洗涤粗产品,放入到60℃的真空箱中干燥48h,最后收集得到白色的聚合物粉末即为PNAGA。将2.0g的PNAGA溶于水中并在90℃下加热24h以得到质量分数0-1.5%的PNAGA水溶液。

(2)1.5%PNAGA水溶液增强醛肼交联型PNIPANM水凝胶的制备:先把99.70mg肼化物P(NIPAM-co-AA)-hdz和98.95mg醛化糊精分别溶解在1g的1.5%PNAGA水溶液中,之后二者的复合水溶液在注射器中混合,挤出注入到模具之中,将模具置于37℃的烘箱之中固化成型后取出,得到1.5%PNAGA稀溶液增强醛肼交联型PNIPANM水凝胶。将水凝胶样品在液氮中快速冷冻10分钟后并立即冷冻干燥24h以除去水。通过扫描电镜可以看出,水凝胶呈现出连续的大孔结构,有利于水凝胶的药物释放。

实施例2

PNAGA增强醛肼交联型PNIPANM水凝胶的制备:把99.70mg肼化物P(NIPAM-co-AA)-hdz和98.95mg醛化糊精分别溶解在1.0g的1.5%PNAGA水溶液中,之后二者的水溶液在注射器中混合,用平行板流变仪对水凝胶的动态模量进行测定,实验中将混合后的溶液注射到板上成型,在37℃下保持40min完全固化成型。样品直径25mm,厚度1mm,实验温度37℃。设置角频率0.1到100rad·s-1,制备PNAGA增强醛肼交联型PNIPANM水凝胶的弹性性能最大为未增强水凝胶的5倍,最大储能模量达到527.0kPa,而未增强水凝胶的弹性模量为93.6kPa。、

实施例3

载药1.5%PNAGA水溶液增强醛肼交联型PNIPANM水凝胶的制备:选用水溶性药物盐酸普萘洛尔作为负载药物进行水凝胶药物缓释性能研究。将6.0mg,12.0mg,18.0mg,24.0mg盐酸普萘洛尔分别溶解在12mL质量分数为1.5%PNAGA水溶液中,从而制备药物含量分别为0.5mg/mL,1.0mg/mL,1.5mg/mL,2.0mg/mL的PNAGA溶液。分别把99.70mg肼化物P(NIPAM-co-AA)-hdz和98.95mg醛化糊精溶解在不同药物浓度的1.0g的1.5%PNAGA水溶液中,二者的水溶液在注射器中混合,之后挤出注入到模具之中,将模具置于37℃的烘箱之中固化成型后取出,得到载药浓度为0.5mg/mL,1.0mg/mL,1.5mg/mL,2.0mg/mL的1.5%PNAGA水溶液增强醛肼交联型PNIPANM水凝胶。将载药水凝胶置于离心管之中,在离心管中各加入10mLPBS缓冲液,之后置于37℃环境中,每隔24h取出3mL液体并同时补加等体积的PBS缓冲液,重复上述操作直至药物缓释测试结束。取出的液体用紫外分光光度计在291.8nm处测定药物浓度,根据数据测试结果计算出得到不同时间点的药物释放量。药物缓释实验表明该水凝胶表现出良好的药物缓释性能,缓释时间最长可达20天,释药率可达99.0%。

本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。本发明的上述实施方案都只能认为是对本发明的示例性说明描述,权利要求书指出了本发明的范围,而上述的说明并未指出本发明的范围,因此,在不脱离本发明的权利要求书相当的含义和范围内的任何简单变化、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换都应认为是包括在权利要求书的保护范围内。

一种PNAGA增强醛肼交联型可注射水凝胶及其制备方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部