专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种通过优化致密填充粒径分布提高材料颗粒填充密度的方法

一种通过优化致密填充粒径分布提高材料颗粒填充密度的方法

IPC分类号 : C04B28/00,C04B7/26,C04B20/00,G05D11/00

申请号
CN201710875825.1
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2017-09-25
  • 公开号: 108585635B
  • 公开日: 2018-09-28
  • 主分类号: C04B28/00
  • 专利权人: 佛山科学技术学院

专利摘要

本发明属于建筑材料领域,具体明涉及一种通过优化致密填充粒径分布改善水泥浆、砂浆、混凝土配合比设计,进而提高材料颗粒填充密度的方法。本发明比较分析了实际生产的掺加不同种类不同掺量矿物掺合料的水泥浆胶凝材料试样、砂浆固体材料试样、不同细骨料占比的混凝土骨料试样的粒径分布与优化致密填充粒径分布模型吻合度,并实验测量了相应水泥浆胶凝材料试样、砂浆固体材料试样、混凝土骨料试样的填充密度,表明了颗粒粒径分布越接近优化致密填充粒径分布模型,其填充密度越高,证明了优化致密填充粒径分布模型在水泥浆、砂浆、混凝土配合比优化中的有效作用。

权利要求

1.一种通过优化致密填充粒径分布提高材料颗粒填充密度的方法,其特征在于,包括如下步骤:

步骤一:选取原料,并测定各原料粒径;

步骤二:通过下式(4)和(5)所述的颗粒粒径分布模型计算各粒径分布原料的体积分数用量:

其中,

CPFT为累计体积分数;

D为颗粒粒径;

DL为最大颗粒粒径,取为粒径不小于98%组成材料颗粒粒径的值;

DS为最小颗粒粒径,取为粒径不大于2%组成材料颗粒粒径的值;

p和q为优化分布系数;

ζ为按式(5)计算得到的无量纲系数;

步骤三:按照步骤二计算得到的各粒径分布原料所需的体积分数,取各原料进行混合得到所述材料,所述材料具有较高填充密度的材料。

2.根据权利要求1所述的方法,其特征在于,所述材料为水泥浆。

3.根据权利要求2所述的方法,其特征在于,所述的原料包括水泥,以及粉煤灰、硅粉中的一种或两种。

4.根据权利要求1所述的方法,其特征在于,所述材料为砂浆。

5.根据权利要求4所述的方法,其特征在于,所述原料包括水泥、细骨料,以及任选的粉煤灰、硅粉、玻璃粉中的一种或多种;所述细骨料包括人工砂、天然砂中的一种或两种。

6.根据权利要求1所述的方法,其特征在于,所述材料为混凝土。

7.根据权利要求6所述的方法,其特征在于,所述原料包括水泥、细骨料、粗骨料,以及任选的粉煤灰、硅粉、玻璃粉中的一种或多种;所述细骨料包括人工砂、天然砂中的一种或两种;所述粗骨料包括碎石、卵石中的一种或两种。

说明书

技术领域

本发明属于建筑材料领域,具体涉及一种通过优化致密填充粒径分布改善水泥浆、砂浆、混凝土配合比设计,进而提高材料颗粒填充密度的方法。

背景技术

新拌混凝土和硬化混凝土的性能与其组成的固体颗粒粒径分布状况及填充密度密切相关。若能提高混凝土固体颗粒填充密度,需要填充固体颗粒间空隙的水量和水泥浆量将可以减少,从而提供更多的富余水量和富余浆量来提高新拌混凝土的流动性。除能提高混凝土的流动性外,混凝土固体颗粒填充密度的提高亦能使混凝土的微观结构更加致密,从而提高强度。

混凝土固体颗粒填充密度的提高需要通过优化固体颗粒的粒径分布来实现,理论上最优化的粒径分布为连续分布并使较小的颗粒填充较大颗粒间的空隙。早在1930年代,已有研究者(Andreasen and Andersen 1930,Furnas 1931)提出适用于混凝土和砂浆的致密填充粒径分布模型。

然而,目前的粒径分布模型并不能顾及颗粒大小比细骨料细的颗粒,包括胶凝材料和细骨料中的粉体部分(粉体部分为颗粒粒径小于75微米的部分)。Kwan et al.(2014)研究表明粉体部分可提高填充密度,为混凝土材料的重要部分。

与粒径连续分布的致密填充粒径分布模型不同,普通混凝土中的水泥、细骨料、粗骨料等固体组成材料的粒径分布并非如致密填充粒径分布模型一样的连续分布。普通混凝土固体颗粒粒径分布存在着粒径范围大致为50~500微米(介于水泥和细骨料之间)和小于5微米(细于水泥颗粒)的两档空缺。为达至理想的连续颗粒分布,此两档空缺需要由颗粒粒径合适的掺和料填充。

目前,常用的骨料致密填充粒径分布模型主要有以下三个:

(1)Andreasen and Andersen模型:

其中CPFT为累计体积分数,D为颗粒大小,DL为最大颗粒大小,m为致密填充模型分布系数。

(2)Furnas模型:

通过探索砂浆骨料的填充密度,Furnas(1931)提出了顾及颗粒最小粒径的Furnas模型:

其中DS为最小粒径,r为致密填充模型分布系数,其他符号意义与式(1)一致。

(3)Funk and Dinger模型,亦称Modified Andreasen and Andersen模型:

Funk and Dinger(1994)改善了Andreasen and Andersen模型,提出下式(3):

式(2)和式(3)考虑了最小颗粒粒径的作用,为较成熟精确的填充密度模型。虽然模型式(2)和式(3)为不同研究人员独立提出的成果,但通过比较式(2)和式(3)可以看出只要把式(2)中的r取为em,或者把式(3)中的m取为ln(r),该两模型完全一样。

然而,上述公式仍然存在缺陷,现有技术缺乏优化的致密填充粒径分布模型,提高混凝土固体颗粒填充密度基本靠经验性的不断试错,缺乏科学的方法作指导。

发明内容

由于普通混凝土固体颗粒粒径分布存在着粒径范围大致为50~500微米(介于水泥和细骨料之间)和小于5微米(细于水泥颗粒)的两档空缺(如图1所示)。

本申请基于现有的骨料致密填充模型出发,考虑了混凝土固体颗粒粒径分布存在着多档空缺的因素,探索优化致密填充粒径分布模型,提供一种通过优化致密填充粒径分布改善水泥浆、砂浆、混凝土配合比设计的方法,克服现有技术的上述缺陷。

本发明是通过如下技术方案实现的。

本发明涉及一种通过优化致密填充粒径分布提高材料颗粒填充密度的方法,具体包括:

步骤一:选取原料,并测定各原料粒径;

步骤二:通过下式(4)和(5)所述的颗粒粒径分布模型计算各粒径分布原料的体积分数用量:

其中,

CPFT为累计体积分数;

D为颗粒粒径;

DL为最大颗粒粒径,取为粒径不小于98%组成材料颗粒粒径的值;

DS为最小颗粒粒径,取为粒径不大于2%组成材料颗粒粒径的值;

p和q为优化分布系数;

ζ为按式(5)计算得到的无量纲系数;

步骤三:按照步骤二计算得到的各粒径分布原料所需的体积分数,取各原料进行混合得到所述材料,所述材料具有较高填充密度的材料。

在本发明所述的方法中,所述颗粒粒径分布模型是在现有模型的基础上基于颗粒粒径分布概念所提出的,其中的优化分布系数p和q通过SPSS(Statistical Product andService Solutions,统计产品与服务解决方案)统计软件按照穷举法所能获取的与实际颗粒分布误差平均方差值最小原则得出。

在本发明所述的方法中,所述材料可以是水泥浆、砂浆、混凝土等。对于各种材料所用的原料是已知的。例如,当所述材料为水泥浆时,对应的原料包括水泥,以及粉煤灰、硅粉中的一种或两种;当所述材料为砂浆时,对应的原料包括水泥、细骨料,以及任选的粉煤灰、硅粉、玻璃粉中的一种或多种,所述细骨料为人工砂、天然砂等;当所述材料为混凝土时,对应的原料包括水泥、细骨料、粗骨料,以及任选的粉煤灰、硅粉、玻璃粉中的一种或多种,所述细骨料为人工砂、天然砂等,所述粗骨料为碎石、卵石等。

另外,为了验证本发明所述的方法,需要计算所述材料固体颗粒整体粒径分布以及测量所述材料的填充密度。

其中,固体颗粒整体粒径分布的计算方法如下(以混凝土为例,其余材料同):

混凝土中颗粒粒径分布能通过水泥、矿物掺和料、骨料等组成材料的粒径分布和混凝土配比中各组成材料含量计算获得。

由于凝土配比中各组成材料含量通常用质量表示,而各组成材料的密度不同,在优化粒径分布时需要计算出各组成材料的体积比,以分数表示。

例如,若混凝土的胶凝材料含有水泥、粉煤灰、硅粉三种材料,其体积分数可计算为:

在上式中,下标B代表胶凝材料(即水泥、粉煤灰、硅粉的总称),(VPFA/VB)为粉煤灰的体积分数,(MPFA/MB)为粉煤灰的质量分数,(VCSF/VB)为硅粉的体积分数,(MCSF/MB)为硅粉的质量分数,ρOPC、ρPFA、ρCSF分别为水泥、粉煤灰、硅粉的密度。对于砂浆和混凝土,胶凝材料和骨料的体积分数能通过相同方法计算得到,进而计算出各材料的体积分数。通过各组成材料各自的粒径分布,可以计算得到混凝土固体颗粒整体粒径分布。

所述材料的填充密度实验测量方法如下:

填充密度实验测量方法采用湿测紧密值法(Wong H.H.C.,Ng I.Y.T.,Ng P.L.andKwan A.K.H.(2007),“Increasing packing density through ternary blendingcement,fly ash and silica fume to improve cement paste rheology”,In:MalhotraV.M.(ed.),Fly Ash,Silica Fume,Slag,and Natural Pozzolans in Concrete,ACISpecial Publication SP-242.Michigan:American Concrete Institute:433-446.),取固体颗粒材料在与不同水量拌合情况下的最大体积分数为该批固体颗粒材料的填充密度。体积分数可计算为固体颗粒体积与所占空间体积VS的百分比:

=VS/V (9)

空隙率ε定义为固体颗粒间空隙体积占固体颗粒所占空间体积的比例,空隙比u定义为固体颗粒间空隙体积与固体颗粒体积之比。根据空隙率和空隙比定义,有以下关系式子

对于混凝土固体颗粒,和u值取决于水/固比(W/S ratio)。当水/固比比较低时,体积分数随着水/固比的增加而增加直至到达一个最大值,其后随着水/固比的增加而降低。此体积分数最大值为填充密度,通过式(10)可得到相应的最小空隙比umin.

本发明基于水泥浆、砂浆、混凝土配比及性能优化的需要,提出了优化致密填充粒径分布模型。本发明比较分析了实际生产的掺加不同种类不同掺量矿物掺合料的水泥浆胶凝材料试样、砂浆固体材料试样、不同细骨料占比的混凝土骨料试样的粒径分布与优化致密填充粒径分布模型吻合度,并实验测量了相应水泥浆胶凝材料试样、砂浆固体材料试样、混凝土骨料试样的填充密度,表明了颗粒粒径分布越接近优化致密填充粒径分布模型,其填充密度越高,证明了优化致密填充粒径分布模型在水泥浆、砂浆、混凝土配合比优化中的有效作用。

附图说明

图1:普通混凝土颗粒粒径分布

图2:实际工程中各混凝土主要组成材料的粒径分布

图3:掺15%粉煤灰的胶凝材料(填充密度=0.64)

图4:掺30%粉煤灰的胶凝材料(填充密度=0.67)

图5:掺5%硅粉的胶凝材料(填充密度=0.68)

图6:掺10%硅粉的胶凝材料(填充密度=0.71)

图7:掺15%粉煤灰和10%硅粉的胶凝材料(填充密度=0.73)

图8:掺30%粉煤灰和10%硅粉的胶凝材料(填充密度=0.75)

图9:无掺加掺和料砂浆固体颗粒材料(填充密度=0.71)

图10:掺5%硅粉砂浆固体颗粒材料(填充密度=0.72)

图11:掺10%硅粉砂浆固体颗粒材料(填充密度=0.73)

图12:细骨料占比为0.3的骨料(填充密度=0.67)

图13:细骨料占比为0.4的骨料(填充密度=0.72)

图14:细骨料占比为0.5的骨料(填充密度=0.75)

具体实施方式

为了加深对本发明的理解,下面将结合实施例对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明保护范围的限定。

图2为实际工程中各混凝土主要组成材料的粒径分布。

水泥浆、砂浆、混凝土试样的固体组成材料的粒径分布将与优化致密填充粒径分布模型作对比,并通过测量得到的填充密度结果作检验,体现优化致密填充粒径分布模型粒径分布对填充密度的影响。

在优化致密填充粒径分布模型的参数中,DS取为粒径不大于2%组成材料颗粒粒径的值,DL取为粒径不小于98%组成材料颗粒粒径的值,优化分布系数p和q通过SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案)统计软件按照穷举法所能获取的与实际颗粒分布误差平均方差值最小原则得出。

(一)优化致密填充粒径分布模型适用于水泥浆配比设计优化的证明

分别配制不同掺加量的水泥浆,并根据本发明所述的方法计算材料的整体粒径分布以及填充密度。根据计算数据绘制材料的实际颗粒粒径分布曲线,并与优化致密填充粒径分布模型曲线相比较,分析二者的接近程度与填充密度的关系。

本发明优化致密填充粒径分布模型适用于水泥浆配比设计优化的证明如下表1以及图3至图8所述,其中所述胶凝材料为掺有不同重量百分含量的粉煤灰和/或硅粉的水泥浆。其示出了双掺了粉煤灰和硅粉的胶凝材料的整体粒径分布。优化分布系数p为0.10至0.26,优化分布系数q为0.05至0.65。

表1优化致密填充粒径分布模型适用于水泥浆配比设计优化的证明

※数值无实际含义,同一试验中数值越高,表示接近程度越高。

结果表明,粒径分布接近优化致密填充粒径分布模型的胶凝材料的填充密度较高,例如掺30%粉煤灰和10%硅粉胶凝材料的粒径分布与分布模型趋势最为接近,其实测填充密度也为最高。也就是说,依据本发明所述的粒径分布模型计算得到的配比材料能够实现填充密度的提高。

(二)优化致密填充粒径分布模型适用于砂浆配比设计优化的证明

分别配制掺加不同重量百分含量的掺合料的砂浆,并根据本发明所述的方法计算材料的整体粒径分布以及填充密度。根据计算数据绘制材料的实际颗粒粒径分布曲线,并与优化致密填充粒径分布模型曲线相比较,分析二者的接近程度与填充密度的关系。

本发明优化致密填充粒径分布模型适用于砂浆配比设计优化的证明如下表2以及图9至图11所述,其示出了无掺加掺和料、掺5%硅粉、掺10%硅粉砂浆的固体颗粒材料的整体粒径分布。所有砂浆配比的胶凝材料与细骨料体积比均为0.75:1.0。优化分布系数p为0.15至0.20,优化分布系数q为0.12至0.22。

表2优化致密填充粒径分布模型适用于砂浆配比设计优化的证明

※数值无实际含义,同一试验中数值越高,表示接近程度越高。

结果表明,粒径分布接近优化致密填充粒径分布模型的砂浆固体颗粒材料的填充密度较高。也就是说,依据本发明所述的粒径分布模型计算得到的配比材料能够实现填充密度的提高。另外,与优化致密填充粒径分布模型相比,图9至图11表明砂浆固体材料粒径分布中缺乏粒径约为100微米的颗粒。根据优化致密填充粒径分布模型可知,掺加例如玻璃粉等颗粒粒径为100微米左右的粉体可显著提高砂浆固体材料的填充密度。

(三)优化致密填充粒径分布模型适用于混凝土骨料配比设计优化的证明

分别配制不同细骨料重量占比的混凝土骨料(所用细骨料为人工砂,粗骨料为碎石),并根据本发明所述的方法计算材料的整体粒径分布以及填充密度。根据计算数据绘制材料的实际颗粒粒径分布曲线,并与优化致密填充粒径分布模型曲线相比较,分析二者的接近程度与填充密度的关系。

本发明优化致密填充粒径分布模型适用于混凝土配比设计优化的证明如下表3以及图12至图14所述,其示出了不同细骨料占比的骨料整体粒径分布。优化分布系数p为0.55至0.75,优化分布系数q为0.60至0.70。

表3优化致密填充粒径分布模型适用于混凝土骨料配比设计优化的证明

※数值无实际含义,同一试验中数值越高,表示接近程度越高。

结果表明,粒径分布接近优化致密填充粒径分布模型的骨料的填充密度较高。也就是说,依据本发明所述的粒径分布模型计算得到的配比材料能够实现填充密度的提高。

尽管对本发明已做出了详细的说明,并列出了一些具体实例,但对本领域技术人员而言,只要不脱离本发明的精神,对本方法所做的各种调整均被视为包含在本发明的范围内。

一种通过优化致密填充粒径分布提高材料颗粒填充密度的方法专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部