IPC分类号 : B01J20/06I,B01J20/28I,B01J20/30I,B01J19/08I,C01F17/00I,B82Y40/00I,C01G49/02I,C01G45/02I,C01G3/02I,C01G9/03I,C02F1/28I,C02F101/10N
专利摘要
本发明公开了一种氢氧化镧纳米粒子磷吸附材料的制备方法,首先使用镧金属为电极采用电弧激发的方法产生镧原子,镧原子在惰性气体携带过程中碰撞合并形成镧纳米粒子,然后使镧纳米粒子在常温常压下与水蒸气反应,生成氢氧化镧纳米粒子,最后采用载体材料对氢氧化镧纳米粒子进行接收,得到氢氧化镧纳米粒子磷吸附材料。其合成过程简单快速、无副产物产生,通过对磷酸根的吸附效果好,主要用于水体中磷的吸附。
权利要求
1.一种氢氧化镧纳米粒子磷吸附材料的制备方法,其特征在于,在惰性气氛中,首先使用镧金属为电极,采用电弧激发的方法产生镧原子,镧原子在惰性气体携带过程中碰撞合并形成0.5~2nm的初始镧纳米粒子;所述惰性气体为氮气或氩气;
然后通入水蒸气,使镧纳米粒子与水蒸气在常温常压下发生水合反应,生成氢氧化镧纳米粒子;最后采用载体材料对氢氧化镧纳米粒子进行接收,得到氢氧化镧纳米粒子磷吸附材料;
具体操作方法为:取密封腔,将一对金属镧电极安装在腔体上,金属镧电极伸入腔体内且金属镧电极尖端之间的间距可调;将金属镧电极连接到可调制的高压电源上,调节可调制高压电源,使金属镧电极的尖端放电产生电火花,使金属镧电极金属原子化,同时镧原子不断聚并形成初始纳米粒子;
腔体上在金属镧电极安装的垂直方向开有进气孔和出气孔,从进气孔通入惰性气体载气,惰性气体载气携带镧原子蒸汽过程中,其不断聚并形成初始纳米粒子;在出气孔外连接另一密封反应腔体,该反应腔体上开有水蒸气通道并通入水蒸气,水蒸气与进入反应腔体的初始镧金属原子在反应腔体内反应生成氢氧化镧纳米粒子;在反应腔体的末端采用载体材料对氢氧化镧纳米粒子进行接收,得到氢氧化镧纳米粒子磷吸附材料。
2.根据权利要求1所述的制备方法,其特征在于,具体方法如下:将两个直径3~6.35mm、纯度为99.99%的金属镧电极,安装在一个电极之间的间隙可以从0mm-100mm调节的四通不锈钢腔体中;
在电极两端接入高压电并与电容器并联,使相对的两个电极尖端放电产生电火花,使金属镧电极原子化,并在与电极安装垂直方向的通路通入惰性气体,原子化镧蒸汽在迁移过程中,原子相互碰撞聚集形成镧纳米粒子,形成镧纳米粒子气溶胶流进入反应腔体;
在反应腔体中通入水蒸气与镧纳米粒子气溶胶混合反应后,得到氢氧化镧纳米颗粒;并在反应腔体的气路末端采用载体材料收集氢氧化镧纳米颗粒,得到氢氧化镧纳米粒子磷吸附材料。
3.根据权利要求2所述的制备方法,其特征在于,电极的电压为0.5-5.0kv,电流5.0-15.0mA。
4.根据权利要求2所述的制备方法,其特征在于,所述惰性气体的流量为5~20L/min。
5.根据权利要求2所述的制备方法,其特征在于,水蒸气的温度为25-99℃,流量为1-20L/min。
6.根据权利要求2所述的制备方法,其特征在于,载体材料为纳米纤维膜或多孔结构材料。
说明书
技术领域
本发明属于纳米材料领域,具体涉及一种氢氧化镧纳米粒子磷吸附材料的制备方法。
背景技术
由于稀土元素镧的氢氧化物对磷酸根具有特异性高效吸附的特性,而多被选择作为吸附核心来制备高效的水体磷吸附材料。尤其是在纳米尺度展开氢氧化镧纳米颗粒能够极大的发挥氢氧化镧的超高磷吸附效能,但由于目前主要合成纳米粒子的方法为水热化学合成法,合成过程中需要大量的溶剂并产生更多的污染物,并且合成的纳米粒子极其容易团聚从而失去纳米尺度高比表面积的结构优势。而且水热法合成氢氧化镧纳米粒子不仅会使用很多药剂、溶剂,产生的纳米粒子必须分散在液体内,进一步使用时又对载体具有一定的限制,进一步限制了产品的应用。
人们发展出很多制备纳米粒子的方法,如电爆法,是将两块块状金属作为电极,通电使之产生电弧,电弧轰击金属电极,轰击破碎产生相应不同尺寸的纳米粒子。该方法形成的纳米粒子尺寸不可控,一般在5nm-1000nm之间,同时这种方法仅能制备纳米金属单质,对于金属的氢氧化物纳米粒子则无法获得。
CN201280043459.9提供了一种通过产生电火花轰击流经前体气体制备纳米粒子的方法,该方法制备得到的纳米粒子可以包含硅,或硅的化合物或合金,并且典型地可用于电子和电学用途中。但该方法只能通过对制备成气体的元素进行轰击,而不能对块状原料进行处理,使用受到很大限制;并且该方法形成的纳米粒子种类很有限,得到的纳米粒子气溶胶中包含剩余的原料气体:如锗烷,无法形成纯净的粒子,同时也无法合成金属氢氧化物纳米粒子。
发明内容
本发明所要解决的技术问题为:如何提供一种氢氧化镧纳米粒子磷吸附材料的制备方法,解决现有的氢氧化镧纳米粒子合成方法污染大及容易发生团结的问题。
本发明的技术方案为:
一种氢氧化镧纳米粒子磷吸附材料的制备方法,其特征在于,在惰性气氛中,首先使用镧金属为电极,采用电弧激发的方法产生镧原子,镧原子在惰性气体携带过程中碰撞合并形成0.5~2nm的初始镧纳米粒子;
然后通入水蒸气,使镧纳米粒子与水蒸气在常温常压下发生水合反应,生成氢氧化镧纳米粒子;最后采用载体材料对氢氧化镧纳米粒子进行接收,得到氢氧化镧纳米粒子磷吸附材料。
进一步地,具体操作方法为:取密封腔,将一对金属镧电极安装在腔体上,金属镧电极伸入腔体内且金属镧电极尖端之间的间距可调;将金属镧电极连接到可调制的高压电源上,调节可调制高压电源,使金属镧电极的尖端放电产生电火花,使金属镧电极金属原子化,同时镧原子不断聚并形成初始纳米粒子;
腔体上在金属镧电极安装的垂直方向开有进气孔和出气孔,从进气孔通入惰性气体载气,惰性气体载气携带镧原子蒸汽过程中,其不断聚并形成初始纳米粒子;在出气孔外连接另一密封反应腔体,该反应腔体上开有水蒸气通道并通入水蒸气,水蒸气与进入反应腔体的初始镧金属原子在反应腔体内反应生成氢氧化镧纳米粒子;在反应腔体的末端采用载体材料对氢氧化镧纳米粒子进行接收,得到氢氧化镧纳米粒子磷吸附材料。
进一步地,更具体方法如下:将两个直径3~6.35mm、纯度为99.99%的金属镧电极,安装在一个电极之间的间隙可以从0mm-100mm调节的四通不锈钢腔体中;
在电极两端接入高压电并与电容器并联,使相对的两个电极尖端放电产生电火花,使金属镧电极原子化,并在与电极安装垂直方向的通路通入惰性气体,原子化镧蒸汽在迁移过程中,原子相互碰撞聚集形成镧纳米粒子,形成镧纳米粒子气溶胶流进入反应腔体;
在反应腔体中通入水蒸气与镧纳米粒子气溶胶混合反应后,得到氢氧化镧纳米颗粒;并在反应腔体的气路末端采用载体材料收集氢氧化镧纳米颗粒,得到氢氧化镧纳米粒子磷吸附材料。
进一步地,电极的电压为0.5-5.0kv,电流5.0-15.0mA。
进一步地,惰性气体为氮气或氩气,流量为5~20 L/min。
进一步地,水蒸气的温度为25-99℃,流量为1-20 L/min。
进一步地,载体材料为纳米纤维膜或多孔结构材料。
采用本发明方法还可以制备其他金属的氢氧化物纳米粒子磷吸附材料,如氢氧化铁纳米粒子磷吸附材料、氢氧化锰纳米粒子磷吸附材料、氢氧化锌纳米粒子磷吸附材料、氢氧化铜纳米粒子磷吸附材料等。
与现有技术相比,本发明具有以下有益效果:
1、本发明采用绿色合成过程,无其他药剂添加,无副产物生成,大幅削减生产成本,无生产过程安全性问题。
2、本发明中氢氧化镧纳米粒子可以通过气流均匀分散在载体上。
3、本发明中通过对电压、电流、及气流速度的控制,可使氢氧化镧纳米粒子的粒径控制在8-12nm之间。
4、本发明所得氢氧化镧纳米粒子与静电纺丝纳米纤维膜结合紧密,不易脱落。
5、本发明所得到的氢氧化镧纳米粒子磷吸附材料,可对低浓度、大水量、高流速水体中磷进行高效吸附,磷去除率达到99%,吸附效果好,且无后续释放。
6、本发明所得到的氢氧化镧纳米粒子磷吸附材料适用范围广,在广泛的pH范围内均保持稳定的吸附效率,同时不易受其他共存离子干扰。
7、本发明所得到的氢氧化镧纳米粒子磷吸附材料,通过改变接收材料如超滤膜、石墨烯、蜜胺纳米海绵等,可以使其功能及效果具有多样性。
附图说明
图1为本发明制备氢氧化镧纳米粒子所用的设备结构示意图。
图2为实施例1得到的氢氧化镧纳米粒子磷吸附材料的5μm扫描电镜图。
图3为实施例1得到的氢氧化镧纳米粒子磷吸附材料的1μm扫描电镜图。
图4为实施例1得到的氢氧化镧纳米粒子磷吸附材料对初始浓度10mgP/L的磷酸盐溶液的吸附曲线图。
图5为实施例2在不同pH范围及多种阴离子共存的条件下的吸附效果。
具体实施方式
实施例1
一、如图1所示,将3mm直径、纯度为99.99%的金属镧电极对,安装在一个电极之间的间隙可以从0mm-100mm调节的体积约为300立方厘米的四通不锈钢腔体中;将两个电极连接到一个可调制高压电源上,并与一个最大电容为20nF的可变电容器并联,高压探头与示波器相连接,记录放电过程中火花间隙的电压;
二、调节控制电极电压为1.36kv,电流8.0mA,使相对的两个电极尖端放电,并产生电火花,使电极金属原子化;在与电极安装垂直方向的通路通入惰性气体氮气,气体流量为10L/min;镧原子在惰性气体携带过程中碰撞合并形成0.5~2nm的初始镧纳米粒子;
三、在气路后端距离四通腔体50cm后连接体积为50立方厘米的三通不锈钢腔体,并通入温度45℃水蒸气,气体流量为10L/min;使镧纳米粒子与水蒸气发生水合反应,生成氢氧化镧纳米粒子;在气路末端采用静电纺丝PAN纳米纤维膜对氢氧化镧纳米颗粒进行接收,得到氢氧化镧均匀负载的纳米纤维膜。得到的氢氧化镧纳米粒子磷吸附材料的扫描电镜图如图2和图3所示。
对上述制得的氢氧化镧纳米粒子磷吸附材料进行磷吸附实验:
称取0.04g La含量对应的吸附纳米纤维膜,投入至100mLP浓度为0.1mg/L的模拟水体中,记录不同吸附时间下模拟水体中P的浓度变化,结果表明,在吸附5min后,模拟水体中磷的浓度降低至0.007mg P/L,这说明该吸附纳米纤维膜可以充分降低水体中磷酸盐浓度;做出磷吸附去除率随吸附时间的变化曲线,如图4所示,在吸附35min后水体中磷的去除率高达100%。这说明本发明制备的磷高通量吸附纳米纤维膜对低浓度磷具有高吸附速率。
本实施方式氢氧化镧纳米粒子磷吸附材料金属单质镧为原料,通过高压电尖端放电方式形成纳米气溶胶,并在随气流迁移过程中逐渐聚并成纳米粒子,并在与水蒸气的作用下水合成氢氧化镧。其合成过程简单快速、无副产物产生,通过对磷酸根的吸附效果好。
实施例2
一、如图1所示,将6.35mm直径、纯度为99.99%的金属镧电极对,安装在一个电极之间的间隙可以从0mm-100mm调节的体积约为300立方厘米的四通不锈钢腔体中;将两个电极连接到一个可调制高压电源上,并与一个最大电容为20nF的可变电容器并联,高压探头与示波器相连接,记录放电过程中火花间隙的电压;
二、调节控制电极电压为1.01kv,电流5.0mA,使相对的两个电极尖端放电,并产生电火花,使电极金属原子化;在与电极安装垂直方向的通路通入惰性气体氩气,气体流量为18L/min;镧原子在惰性气体携带过程中碰撞合并形成0.5~2nm的初始镧纳米粒子;
三、在气路后端距离四通腔体50cm后连接体积为50立方厘米的三通不锈钢腔体,并通入温度80℃水蒸气,气体流量为15L/min;使镧纳米粒子与水蒸气发生水合反应,生成氢氧化镧纳米粒子;在气路末端采用超滤膜对氢氧化镧纳米颗粒进行接收,得到氢氧化镧均匀负载的纳米纤维膜。
对上述制得的氢氧化镧纳米粒子磷吸附材料进行磷吸附实验:
称取0.04g La含量对应的吸附纳米纤维膜,投入至pH 3-12含有2mmol F
本实施方式氢氧化镧纳米粒子磷吸附材料金属单质镧为原料,通过高压电尖端放电方式形成纳米气溶胶,并在随气流迁移过程中逐渐聚并成纳米粒子,并在与水蒸气的作用下水合成氢氧化镧。其合成过程简单快速、无副产物产生,通过对磷酸根的吸附效果好,吸附效率达99.8%。
本发明所用方法和设备也可以用于制备其他的金属氢氧化物的纳米粒子磷吸附材料,如铁、锰、铜、锌等。
一种氢氧化镧纳米粒子磷吸附材料的制备方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0