专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
一种肽、肽修饰的DBM支架及其制备方法和应用

一种肽、肽修饰的DBM支架及其制备方法和应用

IPC分类号 : C07K14/00,A61P19/08,A61L31/10,A61L31/04,A61L31/16

申请号
CN202010711115.7
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2020-07-22
  • 公开号: 111848741B
  • 公开日: 2020-10-30
  • 主分类号: C07K14/00
  • 专利权人: 中国人民解放军陆军军医大学第一附属医院

专利摘要

本发明具体涉及一种肽、肽修饰的DBM支架及其制备方法和应用,属于骨修复材料技术领域,所述肽为CBD‑LNα4‑cRGD肽,氨基酸序列如SEQIDNO:1所示,用所述肽修饰DBM支架,其制备方法为:将CBD‑LNα4‑cRGD肽溶于含有BSA的PBS缓冲液中,得到CBD‑LNα4‑cRGD肽溶液,将无菌DBM支架浸没于肽溶液中,静置、漂洗、干燥。本发明的DBM支架能促进EPCs的粘附,同时提高血管生成和H型内皮细胞增殖的能力,实现骨缺损修复中血管生成和骨再生的有效耦联,为骨缺损修复的治疗提供了新的策略。

权利要求

1.一种肽,其特征在于,所述肽为CBD-LNα4-cRGD肽,氨基酸序列如SEQ ID NO:1所示。

2.权利要求1所述的一种肽在制备骨修复材料中的应用。

3.一种肽修饰的DBM支架,其特征在于,所述DBM支架上负载有肽,所述肽为CBD-LNα4-cRGD肽,氨基酸序列如SEQ ID NO:1所示。

4.权利要求3所述的DBM支架制备方法,其特征在于,所述方法为:将CBD-LNα4-cRGD肽溶于含有BSA的PBS缓冲液中,得到CBD-LNα4-cRGD肽溶液,将无菌DBM支架浸没于肽溶液中,静置、漂洗、干燥。

5.如权利要求4所述的制备方法,其特征在于,所述PBS缓冲液中BSA的质量分数为1-2%。

6.如权利要求4所述的制备方法,其特征在于,所述静置条件为4℃下6h。

7.如权利要求4所述的制备方法,其特征在于,所述漂洗具体为PBS缓冲液漂洗2-3次。

8.如权利要求4所述的制备方法,其特征在于,所述干燥为氮气干燥,时间为30min。

9.如权利要求4所述的制备方法,其特征在于,所述肽溶液中CBD-LNα4-cRGD肽的终浓度为10-100μM。

10.权利要求3所述的肽修饰的DBM支架在制备骨修复材料中的应用。

说明书

技术领域

本发明属于骨修复材料技术领域,具体涉及一种肽、肽修饰的DBM支架及其制备方法和应用。

背景技术

节段性骨缺损常常发生在创伤、骨感染和骨肿瘤截骨术后的病人。节段性骨缺损的修复是骨科临床面临的重大难题,其关键在于难以获取足量的高活性骨修复材料。自体骨移植的“金标准”治疗策略存在明显的局限性和不足,寻找骨替代材料就显得格外重要。理想的骨替代材料需要具有快速的血管化能力和强大的骨诱导生物活性。目前,骨支架材料中最大的缺陷就是血管化不足,因而往往出现移植骨吸收,成骨不全等并发症。

选择性细胞滞留技术(SCR技术)是一项新型有效的组织工程技术,旨在通过机械过滤和生物吸附的原理,在术中获得患者骨髓液后,随即利用干细胞富集器将骨髓反复流经疏松多孔的支架材料,从而在术中快速创建一个包含骨髓间充质干细胞(marrow stemcell,MSCs)、血管内皮祖细胞(endothelial progenitor cells,EPCs)和相关细胞因子的微环境,实时获得高生物活性的“自体人工骨”。骨髓中含有大量有核细胞和细胞因子,包括骨髓间充质干细胞、造血干细胞、单核巨噬细胞等,这些细胞和因子在骨缺损修复治疗过程中发挥着关键作用。由此可见,滞留足够的细胞和细胞因子是SCR技术进行骨修复的必要条件。应用于SCR技术的支架材料需具备一定的条件,包括其多孔状的立体结构、良好的生物相容性、基本的骨传导性及诱导性等。脱钙骨基质(demineralized bone matrix,DBM)即是一种运用在SCR技术中的常用支架材料,是严格按照规范流程处理的同种异体骨,呈海绵状多孔立体结构,主要成分为胶原和少量细胞因子,具备较好的生物相容性和成骨诱导能力,是目前应用于临床的骨组织工程支架材料。然而由于表面电荷相斥、粘附位点较少等原因,其与细胞粘附的能力还有待提高,故有研究将通过在其表面修饰正电荷、减小的孔径和增加额外粘附位点等方式,来进一步提高其自身的成骨诱导能力和与细胞的粘附能力。此外,当前研究主要着眼于MSCs的粘附、迁移、增殖和分化,而对EPCs的重要性不够重视,导致很多材料在实际运用中效果不佳。

发明内容

有鉴于此,本发明目的之一在于提供一种肽。本发明目的之二在于提供一种肽在骨修复中的应用。本发明目的之三在于提供一种修饰的DBM支架。本发明目的之四在于提供一种肽修饰的DBM支架的制备方法。本发明目的之五在于提供一种肽修饰的DBM支架作为骨修复材料中的应用。为达到上述目的,本发明提供如下技术方案:

1、一种肽,所述肽为CBD-LNα4-cRGD肽,氨基酸序列如SEQ ID NO:1所示。

2、一种肽在骨修复中的应用。

3、一种肽修饰的DBM支架,所述DBM支架上负载有肽,所述肽为CBD-LNα4-cRGD肽,氨基酸序列如SEQ ID NO:1所示。

4、一种肽修饰的DBM支架制备方法,所述方法为:将CBD-LNα4-cRGD肽溶于含有BSA的PBS缓冲液中,得到CBD-LNα4-cRGD肽溶液,将无菌DBM支架浸没于肽溶液中,静置、漂洗、干燥。

作为优选技术方案之一,所述PBS缓冲液中BSA的质量分数为1-2%。

作为优选技术方案之一,所述静置条件为4℃下6h。

作为优选技术方案之一,所述漂洗具体为PBS缓冲液漂洗2-3次。

作为优选技术方案之一,所述干燥为氮气干燥,时间为30min。

作为优选技术方案之一,所述肽溶液中CBD-LNα4-cRGD肽的终浓度为10-100μM。

5、一种肽修饰的DBM支架在作为骨修复材料中的应用。

本发明的有益效果在于:

本发明设计的CBD-LNα4-cRGD肽可以用单纯浸渍的方式修饰到DBM支架上,操作简单,并且在高负荷强度模拟SCR技术操作过程后CBD-LNα4-cRGD肽也不会脱落,得到的CBD-LNα4-cRGD肽修饰的DBM支架(DBM/LN)具有良好的稳定性。DBM支架的主要成分包含I型胶原,胶原结构域肽(CBD)可与I型胶原相结合,使得CBD能够稳定的结合在DBM支架上。同时环状RGD(cRGD)能够与内皮祖细胞表面的整合素αvβ3结合,特异性的粘附EPCs,使得EPCs能够更多的滞留在支架上。此外,层粘连蛋白α4(LNα4)能够有效地促进血管内皮细胞的增殖分化,有利于血管生成。结合这三点的优势,本发明合成的CBD-LNα4-cRGD肽能够稳定地修饰在DBM支架,同时发挥出较强的滞留EPCs的能力,促进EPCs在支架材料上的粘附、增殖和延展状态。更重要的是,可以增强与血管生成密切相关的VEGF高表达,加速EPCs向血管内皮分化,血管再生的加速为骨缺损修复提供良好的营养微环境。本发明DBM/LN支架表现出较强的血管再生和H型内皮细胞增殖的能力,实现骨缺损修复中血管生成和骨再生的有效耦联,为骨缺损修复的治疗提供了新的策略。

附图说明

图1:DBM/LN支架稳定性检测结果图,A为扫描电镜检测结果,B为支架空隙直径对比结果,C为经高负荷强度模拟SCR技术操作的结果;

图2:DBM/LN支架的细胞粘附能力结果图,A和B为离心细胞粘附实验中EPCs在支架上的分布,C为振荡细胞粘附实验中EPCs在支架上的分布;

图3:EPCs在DBM/LN支架上的增殖情况;

图4:CBD-LNα4-cRGD肽对EPCs管腔形成影响图,A为EPCs管腔形成结果,B为管腔累积长度结果;

图5:DBM/LN支架体内修复股骨缺损结果图,A为Micro-CT三维重建骨缺损部位图,B、C、D分别为骨缺损部位BV/TV、Tb.N和Tb.Th定量分析结果;

图6:血管造影结果图,A为Micro-CT血管造影,B为骨血管的体积和表面积定量分析结果;

图7:骨缺损部位的H型内皮细胞CD31、Emcn和细胞核的免疫荧光及细胞总数结果图;

图8:骨缺损部位的H型内皮细胞Ki67、Emcn和细胞核的免疫荧光及细胞总数结果图;

图9:CBD-LNα4-cRGD肽对EPCs中VEGF、p-FAK、FAK、p-ERK1/2和ERK1/2蛋白表达影响图。

具体实施方式

下面将结合附图,对本发明的优选实施例进行详细的描述。

实施例1

制备CBD-LNα4-cRGD肽及DBM/LN支架

uniprot数据库(https://www.uniprot.ore/)中得到LNα4的核心功能结构域序列(序列号为:Q16363,1131-1144),文献“Turner PR,Murray E,McAdam CJ,McConnell MA,Cabral JD,Peptide chitosan/dextran core/shell vascularized 3D constructs forwound healing.ACS Appl Mater Interfaces.2020Jun 28”中得到cRGD序列,文献“C.Addi,F.Murschel,G.De Crescenzo,Design and use of chimeric proteinscontaining a collagen-binding domain for wound healing and bone regeneration,Tissue Eng.Part B Rev.23(2017)163-182”中得到CBD序列,设计CBD-LNα4-cRGD肽,氨基酸序列如SEQ ID NO:1所示。首先采用固相合成法合成CBD-LNα4-cRGD肽,再将CBD-LNα4-cRGD肽溶于含有BSA的PBS缓冲液中,其中BSA的质量分数为2%,得到CBD-LNα4-cRGD肽溶液,肽溶液中CBD-LNα4-cRGD肽的终浓度为100μM,最后将无菌DBM支架浸没在CBD-LNα4-cRGD肽溶液中,4℃下静置6h,PBS漂洗3次、氮气干燥30min,得到DBM/LN支架。

实施例2

DBM/LN支架性能检测

(1)DBM/LN支架的形态特征和稳定性检测

用固相合成法合成CBD-LNα4-cRGD肽过程中,加入3倍荧光素FITC,以硫脲键加成反应的方式接于CBD结构域序列中第三位的赖氨酸后,得到含FITC荧光标签的CBD-LNα4-cRGD肽。按照实施例1中的方法制备含FITC荧光标签的DBM/LN支架。

调整无修饰DBM支架和含FITC荧光标签的DBM/LN支架的尺寸为0.5×0.5×0.3cm,分别放置于环境扫描电镜的样品扫描仓中进行扫描。扫描条件为:低真空模式,25kV加速电压、3.5电子束斑,放大扫描倍数:100×。获得图像后,测量每个孔的横向最小和最大直径得到孔径平均值,每个样品测量10个孔。将上述两种支架置入干细胞富集器内,用50ml的30℃含10%BSA的PBS缓冲液以高负荷强度模拟SCR技术操作过程,循环12次。将模拟负荷后的样品放入带滤网离心管中,200g离心3min。取出支架后,分别将各支架置于共聚焦培养皿中进行扫描并重建清晰图像。扫描条件为:激发波长488nm,接收波长525nm,荧光单通道模式,100×。结果如图1中A、B、C所示,A为扫描电镜检测结果,B为支架空隙直径对比结果,C为经高负荷强度模拟SCR技术操作的结果。图1中A所示,与无修饰的DBM支架表面相比,DBM/LN支架的表面微粗糙度更高,图1中B所示,两组的平均孔径没有统计学差异;图1中C所示,DBM/LN支架具有较强荧光,无修饰DBM支架中检测不到荧光,经高负荷强度的模拟SCR技术操作过程后,DBM/LN支架仍带有较强荧光,这3个实验结果共同证明以单纯浸渍的方式可以较为稳定地将CBD-LNα4-cRGD肽修饰到DBM支架上。

(2)DBM/LN支架对EPCs粘附的影响

a.离心细胞粘附实验评估细胞对支架的粘附能力

用Hoechst-33342染料标记EPCs(购买自美国BioChain公司,Z7030031),调整细胞密度为5×106个/mL,接种于6孔板中,每孔2.5mL,共12孔。按照实施例1的方法制作DBM/LN支架,调整DBM/LN支架和无修饰DBM支架的尺寸为1×1×0.05cm,每组支架6个,将各组支架用医用胶固定于盖玻片上,分别浸没于6孔板中,37℃孵育5min。每组抽取3支盖玻片,在荧光显微镜下多视野拍照。每组剩余盖玻片翻转置于带滤网的离心管内,50g离心5min,离心后取出盖玻片,荧光显微镜下拍照。利用Image J软件对离心前后的图像进行细胞计数,上述实验重复4次。

b.振荡细胞粘附实验评估细胞对支架的粘附能力

将EPCs细胞密度调整为5×106个/mL,接种于6孔板中,每孔2.5mL,共12孔。按照实施例1的方法制作DBM/LN支架,调整DBM/LN支架和无修饰DBM支架的尺寸为1×0.5x0.05cm,每组支架6个,分别浸没于6孔板中,37℃孵育5min,每组抽取3支盖玻片放入含10mL基础培养基的50mL离心管中,立即将离心管垂直固定在轨道振荡器中,150rpm振荡2min,将未振荡与振荡后的各组支架转移至含500μL RPIM1640培养基的48孔板中,37℃、5%CO2孵箱中孵育4h,再向各孔中分别加入50μL CCK-8试剂,37℃、5%CO2孵箱中孵育3h,最后将各孔溶液移入96孔板中,酶标仪检测450nm处的OD值,以OD值表示支架上的细胞数。

结果如图2中A、B、C所示,A和B为离心细胞粘附实验中EPCs在支架上的分布结果,C为振荡细胞粘附实验中EPCs在支架上的分布结果。离心细胞粘附实验中,离心前,两组盖玻片上的初始EPCs的密度没有显著差异,离心后,DBM/LN组盖玻片上可观察到更高密度的EPCs;振荡细胞粘附实验中,两组的初始OD值没有显着差异,而经振荡培养后,DBM/LN组的OD值显著高于无修饰DBM组。两个实验均表明DBM/LN支架材料表现出更高的滞留EPCs的能力。

(3)EPCs细胞在DBM/LN支架上的增殖情况

按照实施例1的方法制作DBM/LN支架,调整DBM/LN支架和无修饰DBM的尺寸为0.5×0.5×0.5cm,分别放置在干细胞富集器内。调整EPCs细胞密度为1×105个/mL,吸取10mL细胞悬液加入干细胞富集器,用50ml的30℃含10%BSA的PBS缓冲液以高负荷强度模拟SCR技术富集过程,循环4次。将富集细胞后的支架放入带滤网离心管中,200g离心3min。取出各组支架,分别放入加有500μL RPIM1640培养基的48孔板中,37℃、5%CO2孵箱中培养10天,取出各组支架,PBS缓冲液漂洗3次,4%多聚甲醛固定30min,PBS缓冲液漂洗3次,然后分别放入24孔板内,加入0.5%Triton X-100至浸没,静置10min,PBS缓冲液漂洗3次,3%BSA溶液封闭2h,PBS缓冲液漂洗3次,加入1.5mL罗丹明标记的鬼笔环肽工作液(25mg/m1),使支架浸没,4℃避光孵育过夜,PBS缓冲液漂洗3次,5ug/ml DAPI染色5min,PBS缓冲液漂洗3次,随后在激光共聚焦显微镜下扫描并重建清晰图像。扫描条件为:激发波长488nm,接收波长525nm,荧光单通道模式,100×。以两组模拟SCR技术富集EPCs后,未经培养的两组支架为空白对照。结果如图3所示,培养10天后,与无修饰的DBM支架相比,DBM/LN中有更高数量的EPCs,细胞的延展性和增殖能力更强。

(4)CBD-LNα4-cRGD肽对EPCs细胞管腔形成的影响

将CBD-LNα4-cRGD肽加入RPIM1640培养基中,使终浓度为200nM,用此培养基体外培养EPCs,4小时后收集细胞,并调整细胞密度为1.2×105个/ml,在冰上放置24孔板,将Matrigel基质胶按每孔289μL加入孔板中,37℃孵育60min,加入300μL细胞悬液在基质胶上,37℃孵育4h后,用显微镜观察EPCs管腔的形成,测量管腔累积长度。以不含CBD-LNα4-cRGD肽培养的EPCs作空白对照。结果如图4中A和B所示,A为EPCs管腔形成结果,B为管腔累积长度结果。与不含CBD-LNα4-cRGD肽培养的EPCs细胞相比,EPCs培养中加入CBD-LNα4-cRGD肽后明显促进了EPCs管腔的形成,管腔长度增加了1.3倍。

(5)DBM/LN支架体内修复股骨缺损

按照实施例1的方法制作DBM/LN支架,调整DBM/LN支架和无修饰DBM支架的尺寸为5×2×2mm,将支架分别放置在干细胞富集器内。分离小鼠骨髓和胫骨,用注射器冲出全部骨髓,制备小鼠全骨髓细胞,调整全骨髓细胞密度为1×105个/mL,吸取10mL细胞悬液加入干细胞富集器,用50ml的30℃含10%BSA的PBS缓冲液以高负荷强度模拟SCR技术富集过程,循环4次。将富集细胞后的支架放入带滤网离心管中,200g离心3min。

10周龄雄性C57小鼠,体重25g,0.5%戊巴比妥钠麻醉后,暴露股骨,在股骨的中间部分钻两个孔,两孔间隔3mm,刮除两孔之间的骨膜及皮质,仅保留内侧1/3皮质。将上述支架分别放入股骨缺损处,术后4周取材。

a.骨缺损部位的Micro-CT扫描

对两组小鼠骨缺损部位进行Micro CT扫描,测量计算体骨积分数(BV/TV)、骨小梁数量(Tb.N)和骨小梁厚度(Tb.Th)。结果如图5中A、B、C、D所示,A为Micro-CT三维重建骨缺损部位图,B、C、D分别为骨缺损部位BV/TV、Tb.N和Tb.Th定量分析结果。Micro-CT三维重建图像显示DBM/LN组表现出更好的新骨形成效果,DBM/LN组中BV/TV、Tb.N和Tb.Th的值均高于未修饰DBM组。

b.血管造影

两组小鼠分别用0.5ml 1%戊巴比妥钠处死后,打开胸腔,将头皮针插入左心室建立流入道,右心耳建立流出道。从左心室注射5ml肝素(100U/mL)、3ml 10%中性福尔马林和3ml造影剂,4℃过夜保存,截取小鼠骨缺损的腿,4%多聚甲醛固定3天,加入pH 7.2的EDTA溶液脱钙21天。采用Micro CT扫描图像,计算血管体积和血管表面积。如图6中A、B所示,A为Micro-CT血管造影,B为骨血管的体积和表面积定量分析结果。Micro-CT血管造影观察发现用DBM/LN支架修复后,小鼠骨血管更丰富,对骨血管体积和表面积定量分析,与未修饰的DBM支架修复效果相比,DBM/LN支架修复股骨缺损后,骨血管体积和表面积分别增加95%和92%。

c.H型内皮细胞CD31、Emcn和Ki67的表达

制作两组小鼠的骨石蜡切片,小鼠CD31(1∶500)/endomucin(Emcn,1∶500)双抗混合液,endomucin(1∶500)/Ki67(1∶500)双抗混合液,两种双抗混合液分别与各组石蜡切片4℃过夜孵育,PBS漂洗3次,再滴加荧光偶联二抗(1∶1000),37℃下孵育1h,PBS漂洗3次。5ug/ul DAPI染色5min,PBS缓冲液漂洗3次,共聚焦激光显微镜下拍照,激发波长为488nm、520nm。Image J软件对图像进行定量分析。结果如图7所示,DBM/LN支架组中CD31/Emcn标记的H型内皮细胞数量比无修饰DBM支架组增加2.7倍;如图8所示,Ki67/Emcn的双荧光染色证实,DBM/LN支架组中H型内皮细胞增殖能力显著强于无修饰DBM支架组。

(6)CBD-LNα4-cRGD肽对EPCs各蛋白表达的影响

将CBD-LNα4-cRGD肽加入细胞培养基中,使终浓度为500nM,用此培养基体外培养EPCs,12小时后收集细胞。用含有1%蛋白酶抑制剂和1%磷酸酶抑制剂的冷冻裂解缓冲液裂解EPCs,提取蛋白。SDS-PAGE凝胶电泳分离蛋白,再将凝胶转移到PVDF膜上。分别在相应蛋白条带处滴加抗体VEGF(1∶1000)、p-FAK(1∶1000)、FAK(1∶1000)、p-ERK1/2(1∶1000)、ERK1/2(1∶1000)和GAPDH(1∶1000),4℃摇床上缓慢摇动孵育过夜。滴加对应一抗来源的HRP标记的二抗,37℃摇床缓慢摇动2h。随后在凝胶成像仪中曝光、收集图像。以未加CBD-LNα4-cRGD肽培养的EPCs作空白对照。结果如图9所示,加入CBD-LNα4-cRGD肽培养的EPCs中VEGF蛋白表达水平显着高于空白组,同时诱导FAK和ERK1/2磷酸化的水平显著增高。

最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

序列表

<110>中国人民解放军陆军军医大学第一附属医院

<120>一种肽、肽修饰的DBM支架及其制备方法和应用

<160>1

<170>SIPOSequenceListing 1.0

<210>1

<211>24

<212>PRT

<213>人工序列(Artificial Sequence)

<400>1

Thr Lys Lys Thr Leu Arg Thr Ile Asn Asp Lys Tyr His Glu Ile Ile

1 5 1015

Ile Tyr His Arg Gly Asp Phe Lys

20

一种肽、肽修饰的DBM支架及其制备方法和应用专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部