专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
化学机械抛光传输机器人的递归优化控制系统

化学机械抛光传输机器人的递归优化控制系统

IPC分类号 : G05B13/00

申请号
CN201210050640.4
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2012-02-29
  • 公开号: 102591205A
  • 公开日: 2012-07-18
  • 主分类号: G05B13/00
  • 专利权人: 清华大学

专利摘要

本发明公开了一种化学机械抛光传输机器人的递归优化控制系统,包括:上位机控制器、主控制器、运动控制器、检测器、多个伺服驱动器、多个电机和编码器,其中,检测器用于检测传输机器人的工作状态参数以生成检测信息;上位机控制器用于接收用户输入的操作指令;编码器用于检测传输机器人的当前运动位移和当前运动角度;主控制器用于根据操作指令和运动控制器发送的检测信息生成传输机器人的运动指令,运动控制器用于以递归LQ优化控制模式计算电机控制量;多个伺服驱动器,每个伺服驱动器用于根据相应的电机控制量计算相应电机的控制转矩;多个电机,每个电机用于在相应的控制转矩的控制下驱动传输机器人运动。

说明书

技术领域

本发明涉及化学机械抛光技术领域,特别涉及一种化学机械抛光传输机器人的递归优化控制系统。

背景技术

由抛光机的要求,研发一种专用的传输机器人是必要的。国外公司和研究机构在传输机器人及其关键技术的研究与开发,取得了丰硕的成果,并形成了完整的产品体系。但国内传输机器人的研究和开发相比于国外较落后,在精密自动传输人系统方面的研究也很少。目前,应用在国内IC生产线上的自动传输人系统几乎全部是从国外进口,而且国内的传输机器人在稳定性、可靠性和自动化程度上与国际水平有一定差距。

掌握核心技术,相关研究成果在实际生产制造中得以应用,实现传输机器人产品的自主化,以替代维护不便且价格贵的进口产品。相关技术还可移植到其他IC装备中及设备间的晶元传输上,具有一定扩展性。IC设备中对机器人的控制精度要求非常高,由于传输机器人系统是高度非线性动态系统,加之摩擦、载荷变化及其他不确定干扰存在,使传输机器人系统的精确控制是一个难点。

经典控制理论在处理复杂系统时,具有一定局限性。现代控制理论可适用于多输入多输出、非线性、分布参数控制系统,而最优控制是现代控制理论的一个重要组成部分,其中线性二次型(linear quadratic,LQ)优化控制问题是最优控制理论中的一类非常重要的优化控制问题。LQ优化控制的性能指标具有明确的物理意义,所谓的最优就是指某一具体的性能指标达到最优,例如误差最小、控制时间最短、能量最小等。其中得到的最优控制解是状态变量的线性函数,可构成反馈闭环,易于在工程上实现。LQ最优控制方法的对象是线性或可以线性化的系统,为了能更好的对非线性系统进行控制,并能得到更好的控制效果,可采用递归二次型最优控制方法进行控制。递归二次型最优控制方法即是在每个控制点上对系统进行实时线性化处理,再以LQ最优控制。为了能更好对具有非线性的传输机器人系统进行控制,并能得到更好的控制效果,对传输机器人系统采用递归LQ的优化控制。

发明内容

本发明的目的旨在至少解决上述技术缺陷之一,特别提出一种化学机械抛光传输机器人的递归优化控制系统,该系统具有控制精度高且控制效果好的特点。

为达到上述目的,本发明的实施例提出一种化学机械抛光传输机器人的递归优化控制系统,包括:上位机控制器、主控制器、运动控制器、检测器、多个伺服驱动器、多个电机和编码器,其中,所述检测器用于检测传输机器人的工作状态参数以生成检测信息;所述上位机控制器用于接收用户输入的操作指令;所述编码器分别与所述运动控制器和多个所述电机相连,用于检测所述传输机器人的当前运动位移和当前运动角度;所述主控制器分别于所述上位机控制器和所述运动控制器相连,用于根据所述操作指令和所述运动控制器发送的检测信息生成传输机器人的运动指令,并将所述运动指令发送给所述运动控制器,所述运动控制器用于以递归LQ优化控制模式计算电机控制量;多个所述伺服驱动器与所述运动控制器相连,其中,每个所述伺服驱动器用于根据相应的所述电机控制量计算相应电机的控制转矩;多个电机分别与所述多个伺服驱动器和所述传输机器人相连,其中,每个所述电机用于在相应的控制转矩的控制下驱动所述传输机器人运动。

根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统,通过采用递归LQ优化控制模式计算电机控制量,从而通过递归控制,电机可以驱动传输机器人达到预定位置,从而提高控制精度和控制效果。

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1为根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统的结构框图;

图2为根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统的递归LQ最优控制律状态反馈结构图;

图3为根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统的递归LQ优化控制结构图;

图4根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统的递归LQ优化控制流程图;

图5为根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统的递归LQ优化控制有限速流程图;

图6为递归LQ控制水平位置和转矩曲线;

图7为递归LQ控制水平速度曲线;

图8为递归LQ控制升降位置和转矩曲线;

图9为递归LQ控制升降速度曲线;

图10为递归LQ控制旋转角度曲线;

图11为递归LQ控制旋转角速度曲线

图12为递归LQ控制旋转转矩曲线;

图13为递归LQ控制伸缩角度和位置曲线;

图14为递归LQ控制伸缩角速度曲线;

图15为递归LQ控制伸缩转矩曲线;

图16为有限速递归LQ水平位置、速度及转矩曲线;

图17为有限速递归LQ升降位置、速度及转矩曲线;

图18为有限速递归LQ旋转角度、角速度曲线;

图19为有限速递归LQ旋转转矩曲线;

图20为有限速递归LQ伸缩角度、角速度及卡爪位置曲线;以及

图21为有限速递归LQ伸缩转矩曲线。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。

下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。

在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。

参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。

下面参考图1至图5描述根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统。其中,本发明实施例的传输机器人可以将晶圆在IC设备中进行传输。具体地,本发明实施例的传输机器人可以进行水平、升降、旋转、伸缩等运动,从而实现对晶圆的传输。需要说明的是,上述运动可以为机器人按照行为决策规则进行自主智能行为,也可以为按照用户及时下达的操作指令运动。

如图1所示,根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统包括:上位机控制器10、主控制器11、运动控制器3、检测器8、多个伺服驱动器4、多个电机5和编码器7。其中,传输机器人6包括2套执行机构和4个卡爪。

检测器8用于检测传输机器人的工作状态参数以生成检测信息。其中,检测器8包括:光电传感模块、真空传感模块、压力传感模块和视觉传感模块。

光电传感模块分别与传输机器人6和运动控制器3相连,用于检测传输机器人6承载的晶圆的位置信息。真空传感模块分别与传输机器人6和运动控制器3相连,用于检测晶圆的吸附状态,即检测晶圆是否吸附在位的真空传感模块。压力传感模块分别与传输机器人6和运动控制器3相连,用于检测晶圆的在位信息和抓取压力信息,即检测晶圆是否吸附在位的真空传感模块。视觉传感模块分别与传输机器人6和运动控制器3相连,用于检测传输机器人6工作过程中的图像信息。

上位机控制器10用于接收用户输入的操作指令。其中,操作指令包括:程序存储的动作顺序表、动作指令、任务式指令。

在本发明的一个示例中,上位机控制器10可以为2套数字运算操作电子系统的PLC(Programmable Logic Controller,可编程逻辑控制器)。例如:西门子S-300(21)。

上位机控制器10与主控器11间的数据转换器为2套串口数据转化为PROFIBUS-DP的DP即Decentralized PeripheryDP数据转换器PB-B-RS232(22)。

编码器7分别与运动控制器3和多个电机5相连,用于检测传输机器人的当前运动位移和当前运动角度。

主控制器11分别与上位机控制器10和运动控制器3相连,用于根据操作指令和检测信息生成传输机器人6的运动指令,并将运动指令发送给运动控制器3。

在本发明的一个示例中,主控制11为2套嵌入式计算机系统,例如,型号可以为PC104。

运动控制器3以递归LQ优化控制模式计算电机控制量。

在本发明的一个示例中,运动控制器3可以为DSP(Digital Signal Processor,数字信号处理器),例如DSP2812。

在本发明的一个实施例中,如图3所示,运动控制器3包括:动作发生器31、决策控制器32。

动作发生器31与检测器8相连,用于检测检测器8反馈的检测信息,并将检测信息发送给主控制器11。其中,动作发生器31的设计方法包括查表、模糊逻辑和专家系统算法等。

决策控制器32用于接收并解析所述运动指令以得到所述传输机器人的目标运动位移和目标运动角度,以及接收来自编码器7的当前运动位移和当前运动角度,并将当前运动位移和当前运动角度与目标运动位移和所述目标运动角度进行比较以得到当前位移误差和当前角度误差,根据当前位移误差和所述当前角度误差计算多个伺服驱动器4的多个电机控制量。

多个伺服驱动器4与运动控制器3相连。其中,每个伺服驱动器4用于根据初始电机控制量或电机控制量计算相应电机的控制转矩。

在本发明的一个示例中,伺服驱动器4为安川电机伺服驱动器,可以通过电机反馈实现电机5的力矩和速度控制,即伺服驱动器4通过电机电枢电流反馈闭环,实现电机5的速度控制。

多个电机5分别与多个伺服驱动器4和传输机器人6相连。其中,每个电机5用于在相应的控制转矩的控制下驱动传输机器人6运动。

在本发明的一个实施例中,电机5为交流电机,且电机5可以为中惯量小容量的高精度安川交流电机,该电机为带减速器的伺服型交流电机,具有高功率快速响应率

其中,多个所述电机包括:水平电机、升降电机、旋转电机和伸缩电机。其中,水平电机用于驱动传输机器人6将承载的晶圆在水平方向上运动以产生水平位移,升降电机用于驱动传输机器人6将晶圆在竖直方向上运动以产生升降位移,旋转电机用于驱动传输机器人6将晶圆进行旋转运动以产生旋转角度,伸缩电机用于驱动传输机器人6将晶圆进行伸缩运动以产生伸缩角度。

如图1所示,本发明实施例的递归优化控制系统还包括:显示屏1,其中,显示屏1用于显示检测器8的检测信息和用户输入的操作指令。

在本发明的又一个实施例中,本发明实施例的递归优化控制系统还包括报警装置2,其中报警装置2用于在检测信息或操作指令有误时,发出报警信号。其中,报警装置2可以为扬声器。

下面对本发明实施例的化学机械抛光传输机器人的递归优化控制系统的递归控制过程进行详细描述。

化学机械抛光传输机器人的运动控制方法,是一个三闭环的控制系统,包括外环的传输机器人的主控制环、中间环的传输机器人的运动控制环、内环的电机伺服控制环。

下面对本发明实施例的化学机械抛光传输机器人的递归控制系统的递归控制过程进行详细描述。

机器人的主控制器11经过数据转换器、串口以及USB口,由运动控制器3和上位机控制器10读取各个传感器反馈的检测信息和用户的操作指令,并将检测信息和用户的操作指显示在液晶触摸屏1上。当检测信息或用户的操作指令有误时,通过扬声器2报警。主控制器11接收来至上位机控制器10以及液晶触摸屏1的指令信息,定时参照用户操作指令和传感器反馈信息,通过决策控制来将机器人水平移动、升降、旋转、伸缩命令下达给运动控制器3。

主控制器11的运动行为决策算法为:动作发生器31参考用户命令或视觉信息计算出期望水平运动的位移、升降运动的位移、旋转角度和伸缩位置控制命令,决策控制器32根据机器人运动的状况判断是否执行期望控制命令。如果运动状态与期望状态一致,则不需要对传输机器人6的动作进行调整;否则需要对传输机器人6的动作进行调整。

运动控制器3执行主控制器11指令,传输机器人6的水平和升降移动方向由编码器7反馈回信号,调节传输机器人到指定位置。传输机器人6旋转移动方向由光电传感模块、真空传感模块和压力传感模块以及编码器7反馈信号。

动作发生器31接收来自输入设备(例如触摸显示屏)的用户操作命令。动作发生器监测各个传感器反馈信息,并定时参照用户命令和传感器反馈信息,通过决策控制器32运动行为决策算法计算出传输机器人6的水平位移、升降位移、旋转角度及伸缩角度控制命令,下达给伺服驱动器4。在一个运动控制周期内,决策控制器32读取传输机器人6的壳体和伸缩臂的编码器7与视觉传感器9的反馈信号,并与期望值比较得到位移和角度的误差信号。

具体地,运动控制器3读取电机编码器7的反馈信号,计算出传输机器人6的水平移动位移、升降移动位移、旋转角度及伸缩角度,与主控制器11给定的控制命令对比得出误差信号。即,运动控制器3将当前运动位移和当前运动角度与解析主控制器11的控制命令得到的目标运动位移和目标运动角度进行比较,得到当前误差位移和当前误差角度。运动控制器3根据误差信号按照递归LQ优化控制算法计算出电机的控制量,发送给伺服驱动器4执行。

伺服驱动器4执行运动控制器3的指令,通过读取编码器(7)的反馈信号,根据误差信号,伺服驱动器4计算相应电机5的控制转矩,控制交流电机5运动,通过交流电机5带动传输机器人6,使机器人旋转到指定角度.

在本发明的一个实施例中,视觉传感器9将传输机器人6的运动信息反馈回上位机控制器10,从而可对传输机器人6进行工作状态的监测。

首先,将传输机器人的非线性系统,通过解耦处理,进行泰勒级数展开,去掉高阶次项影响,并实时线性化,从而获得传输机器人的线性状态方程,并将其分解为水平移动、升降运动、旋转及伸缩运动四个单输入子系统。根据传输机器人的机械系统的特点和参数,建立其数学模型,线性化处理获得线性状态空间方程:

X=AX+Bu

Y=CX+Du

其中,X=xx·zz·θθ·θ1θ·1T,]]>Y=[x zθθ1]T,u=[τ1 τ2 τ3 τ4]T

A=01000000000000000001000000000000000001000000000000000001000000K1K2,]]>B=0000K400000000K500000000600000000K3,]]>

C=1000000001000000001000000001000000001000000001000000001000000001,]]>D=00000000000000000000006000000000,]]>

K1=-(m2+2m3)sin(2θ)2θ(1/3)(m1+m2)+2(m2+2m3)sin2(θ),]]>K2=-(m2+2m3)(θ·)2cos(2θ)(1/3)(m1+m2)+2(m2+2m3)sin2(θ),]]>

K3=1((1/3)(m1+m2)+2(m2+2m3)sin2(θ))L,]]>K4=1m1+m2+m3+m4+m5+m6,]]>

K5=1m1+m2+m3+m4+m5,]]>K6=1(1/3)(m1+m2+m3)L2+(1/2)m4R2]]>

实时线性化后的动力学模型即非线性模型,是一组结构简单的八维的状态空间方程,采用Matlab求矩阵秩命令rank()得到系统可控性秩矩阵。由系统可控性秩判据rank(B ABA2BA3BA4BA5BA6BA7B)=8,系统可控矩阵为满秩,可知系统为完全可控的,即系统满足最优控制使用条件。

由上述可知系统均完全能控,从而系统各个状态量也均可测量获得,因此以xc,zc,θc,θ1c分别为系统参考输入,状态x, z, θ, θ1, 为反馈量,并采用递归LQ最优控制方法设计系统的状态反馈控制器:递归移动域优化控制是反复在线进行的,属于一种闭环控制方式。系统就是在每个离散时刻k得到一个u*(k)控制量,经过一系列的递归最优控制,系统最后达到了稳定的平衡状态。

定义系统的性能指标:

J=0tf(XTQX+Ru2)dt,]]>

其中Q为半正定矩阵,

Q=[85500000000;01000000;00200000000;00010000;000035000;00000100;0000002700;000000027],为

状态变量的加权矩阵;R=[1000;0100;0010;0001]为控制量的加权系数。通过Matlab程序的函数K(k)=lqr(A,B,Q,R)可求得反馈控制律,获得在k时刻最优控制量u*=-K(k)X,使系统性能指标达到极小。

由系统的离散状态方程式为被控对象,以递归LQ最优控制的性能指标。则递归LQ最优控制主要包括参数设计、迭代运行、参数变换等几个主要部分。下面结合图4对本发明实施例的递归LQ优化控制系统的控制流程进行描述。

S401,参数初始化,包括m1,m2,m3,m4,m5,m6,L,g,d,SL,Js,T,x0,xd,k,n及机器人系统的参数等。其中,m1为大臂质量,m2为小臂质量,m3为卡爪质量,m4为旋转连接件质量,m5为升降台质量,m6为底座质量,L为大臂、小臂、卡爪的长度,d为丝杠的外径,SL为丝杠的导程,Js为减速器比。

S402,定义系统有关矩阵函数A(k)、B(k)、C(k)、D(k)、Q(k)、R(k)等。

S403,在当前k时刻对非线性系统进行线性化处理,得到A′(k)和B′(k)。

S404,求解Riccati方程获得状态反馈增益矩阵K′(k),其中状态反馈增益矩阵K′(k)满足最优控制性能指标极小。

S405,由当前k时刻的状态量x(k)和状态反馈增益矩阵K(k),求出电机控制量u*(k)

S406,将获得的电机控制量u*(k)实施到非线性化学机械抛光传输机器人系统上,得到新的k+1时刻的状态量x(k+1)。

S407,若迭代次数未完成,则 返回到步骤S403。

S408,获得递归最优控制序列u*(1),u*(2),...,u*(n)。

图6为递归LQ控制水平位置(position)和转矩(force)曲线,其中,A为水平位置曲线,B为转矩曲线。图7为结合递归LQ控制水平速度(speed)曲线。图8为结合递归LQ控制升降位置(position)和转矩(force)曲线,其中,A为升降位置曲线,B为转矩曲线。图9为结合递归LQ控制升降速度(speed曲线。图10为结合递归LQ控制旋转角度曲线。图11为结合递归LQ控制旋转角速度曲线。图12为结合递归LQ控制旋转转矩曲线。图13为结合递归LQ控制伸缩角度和位置曲线,其中,A为位置曲线,C为伸缩角度曲线。图14为结合递归LQ控制伸缩角速度曲线。图15为结合递归LQ控制伸缩转矩曲线。

由系统的离散状态方程式为被控对象,以递归LQ最优控制的性能指标。则递归LQ最优控制主要包括参数设计、迭代运行、参数变换等几个主要部分。下面参考图5对有限速的控制流程进行描述。

S501,参数初始化,包括m1,m2,m3,m4,m5,m6,L,g,d,SL,Js,T,x0,xd,k,n及机器人系统的参数等。其中,m1为大臂质量,m2为小臂质量,m3为卡爪质量,m4为旋转连接件质量,m5为升降台质量,m6为底座质量,L为大臂、小臂、卡爪的长度,d为丝杠的外径,SL为丝杠的导程,Js为减速器比。

S502,定义系统有关矩阵函数A(k)、B(k)、C(k)、D(k)、Q(k)、R(k)等。

S503,在当前k时刻对非线性系统进行线性化处理,得到A′(k)和B′(k)。

S504,求解Riccati方程获得状态反馈增益矩阵K′(k),其中,状态反馈增益矩阵K′(k)满足最优控制性能指标极小。

S505,由当前k时刻的状态量x(k)和状态反馈增益矩阵K(k),求出电机控制量u*(k)

S506,将获得的电机控制量u*(k)实施到非线性化学机械抛光传输机器人系统上,得到新的k+1时刻的状态量x(k+1)。

S507,判断化学机械抛光传输机器人的速度是否大于限定速度;若大于,则使速度值等于限定速度值,否则速度值不变。

S508,若迭代次数未完成,则 返回到步骤S503。

S509,获得递归最优控制序列u*(1),u*(2),...,u*(n)。

S510,判断是否结束,即判断迭代此时是否为n,如果不是,则返回步骤S503。

图16为有限速递归LQ水平位置、速度及转矩曲线,其中,A为水平位置曲线,B为转矩曲线,D为速度曲线。图17为有限速递归LQ升降位置、速度及转矩曲线,其中,A为水平位置曲线,B为转矩曲线,D为速度曲线。图18为有限速递归LQ旋转角度、角速度曲线,其中,E为角速度曲线,F为角度曲线。图19为有限速递归LQ旋转转矩曲线。图20为有限速递归LQ伸缩角度、角速度及卡爪位置曲线,其中,A为卡爪位置曲线,G为角速度曲线,H为伸缩角度曲线。图21为有限速递归LQ伸缩转矩曲线。

根据本发明实施例的化学机械抛光传输机器人的递归优化控制系统,在采用递归LQ优化控制模式逐渐逼近目标值,从而提高了系统的控制速度,且使系统达到较好的控制效果,可以实现机器人的基本功能,为控制科学、机械工程及机器人学的研究提供参考。化学机械抛光传输机器人为六自由度,在其关节处采用带传动的方式,化学机械抛光传输机器人控制系统的性能指标具有:三轴联动,闭环控制方式;快速定位;可与上位机串行及网络通信;脱机运行的功能;补偿功能;友好的人机对话界面;开放式的控制方式。具有该递归优化控制系统的化学机械抛光传输机器人满足开放性、经济性、实用性及可靠性等目的。

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。

在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,″计算机可读介质″可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。

上述提到的存储介质可以是只读存储器,磁盘或光盘等。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

化学机械抛光传输机器人的递归优化控制系统专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部