专利摘要
本发明涉及炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法。传统方法控制手段与控制参数完全依赖技术人员经验,控制效果不好。本发明方法首先基于炼油工业加热炉过程模型建立伴随矩阵解耦过程模型,挖掘出基本的过程特性;然后基于该伴随矩阵解耦模型建立预测控制回路;最后通过计算预测控制器的参数,将过程对象实施预测控制。本发明方法通过数据采集、过程处理、预测机理、数据驱动、优化等手段,确立了一种炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法,利用该方法可有效提高控制的精度,提高控制平稳度。本发明方法有效减少理想工艺参数与实际工艺参数的误差,保证控制装置操作在最佳状态。
权利要求
1. 炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法,其特征在于该方法的具体步骤是:
(1)利用炼油工业加热炉温度过程模型建立伴随矩阵解耦模型,具体方法是:
首先采集炼油工业加热炉温度过程的输入输出数据,利用该数据建立输入输出模型如下:
其中 、 、 分别为输出向量、传递函数矩阵、输入向量;
, ,
, , , 表示过程的各回路传递函数, 和 分别为输入、输出变量的拉普拉斯变换, , 为拉普拉斯变换算子, 为过程的输入输出变量个数,所述的输入输出数据为数据采集器中存储的数据;
进一步对上述方程选取伴随矩阵解耦阵为:
其中, 是伴随矩阵解耦阵, 为 的伴随矩阵;
将上述伴随矩阵解耦阵与过程输入输出模型合并得到:
其中, 是得到的解耦过程模型, 为 的行列式, 为以 的行列式为元素的对角矩阵;
将上述解耦过程模型通过离散化处理成过程的离散表示方式:
其中, 、 为输入变量和输出变量的多项式, 为过程的时间滞后, 为后移一步算子, 为后移 步算子, 、 为分别与 、 对应的离散化输出和输入变量, ;
(2)基于该解耦过程模型设计预测控制器,具体方法是:
a.定义该预测控制器多步预测输出的预测公式为:
其中 、 分别是输出预测和输入预测的阶次, 、 为输出预测和输入预测的系数, 为差分算子, 为第 时刻的输出预测, 、 为与 、 对应的各时刻输出变量、输入增量变量, 为当前时刻, 为第 步预测时刻;
b.定义参考轨迹的组成为:
其中, 是第 时刻的输出预测, 、 、 分别是第 时刻、第 时刻、第 时刻的参考轨迹, 是参考轨迹的柔化系数, 是过程输出设定值;
c.定义输出预测和参考轨迹的向量形式为:
其中, 为输出预测向量, 为依据a.步骤并令预测控制器多步预测输出的预测公式中输入增量变量为零时求得的数值, 为依据a.步骤并令预测控制器多步预测输出的预测公式中输入增量变量不为零时求得的数值; 为参考轨迹向量, 为第 时刻的参考轨迹数值, 为预测步长, 为求转置算子; 、 具体表现为:
其中, 为相应的输入增量变量的系数, 为对应的第 时刻输入增量变量;
d.计算控制器的参数,具体是:
其中 为控制器求取系数向量;
其中 、 为加权项系数。
说明书
技术领域
本发明属于自动化技术领域,涉及一种炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法。
背景技术
工业加热炉是我国炼油工业过程的重要组成设备,加热炉控制的有效与否,是实现“安、稳、长、满、优”生产操作的关键,它对后续的工艺处理过程以及降低全厂的能耗均有重大意义。为此,生产过程的各个主要工艺参数必须严格控制。随着市场对石油化工产品的质量要求越来越高,以及生产工艺技术的发展,工艺过程变得更加复杂。简单的单回路过程控制难以满足较高的控制要求,形成了从常规控制发展到复杂控制、先进控制等高级阶段的要求。由此带来的问题就是被控对象成为复杂的多变量对象,输入量与输出量之间相互关联。这些不利因素导致传统的控制精度无法提高,又进一步导致后续生产控制参数不稳定,产品合格率低,装置效率低下。而目前实际工业中控制基本上采用传统的简单控制手段,控制参数大部分依赖技术人员经验,使生产成本增加,控制效果很不理想。我国炼油工业过程加热炉控制与优化技术比较落后,能耗居高不下,控制性能差,自动化程度低,很难适应节能减排以及间接环境保护的需求,这其中直接的影响因素之一便是系统的控制方案问题。
发明内容
本发明的目标是针对现有的炼油工业加热炉温度过程系统控制技术的不足,提供一种伴随矩阵解耦预测控制方法。该方法弥补了传统控制方式的不足,保证控制具有较高的精度和稳定性的同时,也保证形式简单并满足实际工业过程的需要。
本发明方法首先基于炼油工业加热炉过程模型建立伴随矩阵解耦过程模型,挖掘出基本的过程特性;然后基于该伴随矩阵解耦模型建立预测控制回路;最后通过计算预测控制器的参数,将过程对象实施预测控制。
本发明的技术方案是通过数据采集、过程处理、预测机理、数据驱动、优化等手段,确立了一种炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法,利用该方法可有效提高控制的精度,提高控制平稳度。
本发明方法的步骤包括:
(1)利用炼油工业加热炉温度过程模型建立伴随矩阵解耦模型,具体方法是:
首先采集炼油工业加热炉温度过程的输入输出数据,利用该数据建立输入输出模型如下:
Y(s)=G(s)U(s)
其中Y(s)、G(s)、U(s)分别为输出向量、传递函数矩阵、输入向量;
G11(s),G12(s),…,GNN(s)表示过程的各回路传递函数,uk(s)和yk(s)分别为输入、输出变量的拉普拉斯变换,k=1,2,…,N,s为拉普拉斯变换算子,N为过程的输入输出变量个数,所述的输入输出数据为数据采集器中存储的数据;
进一步对上述方程选取伴随矩阵解耦阵为:
N(s)=adjG(s)
其中,N(s)是伴随矩阵解耦阵,adjG(s)为G(s)的伴随矩阵。
将上述伴随矩阵解耦阵与过程输入输出模型合并得到:
W(s)=G(s)·N(s)
=G(s)·adjG(s)
=diag det G(s)
其中,W(s)是得到的解耦过程模型,detG(s)为G(s)的行列式,diag det G(s)为以G(s)的行列式为元素的对角矩阵。
将上述解耦过程模型通过离散化处理成过程的离散表示方式:
A(z-1)yk(t)=z-(d+1)B(z-1)uk(t)
其中,A(z-1)、B(z-1)为输入变量和输出变量的多项式,d为过程的时间滞后,z-1为后移一步算子,z-(d+1)为后移d+1步算子,yk(t)、uk(t)为分别与yk(s)、uk(s)对应的离散化输出和输入变量,k=1,2,…,N。
(2)基于该解耦过程模型设计预测控制器,具体方法是:
a.定义该预测控制器多步预测输出的预测公式为:
其中n、m分别是输出预测和输入预测的阶次,A1,i、B1,i为输出预测和输入预测的系数,Δ为差分算子,yk(t+1)为第t+1时刻的输出预测,yk(t+1-i)、Δuk(t-d-i)为与A1,i、B1,i对应的各时刻输出变量、输入增量变量,t为当前时刻,i为第i步预测时刻;
b.定义参考轨迹的组成为:
yr(t+d)=yk(t+d)
yr(t+d+j)=αyr(t+d+j-1)+(1-α)s
其中,yk(t+d)是第t+d时刻的输出预测,yr(t+d)、yr(t+d+j)、yr(t+d+j-1)分别是第t+d时刻、第t+d+j时刻、第t+d+j-1时刻的参考轨迹,α是参考轨迹的柔化系数,s是过程输出设定值;
c.定义输出预测和参考轨迹的向量形式为:
Y=Ym+GU
Yr=(yr(t+d+1),yr(t+d+2),…,yr(t+p))T
其中,Y为输出预测向量,Ym为依据a.步骤并令预测控制器多步预测输出的预测公式中输入增量变量为零时求得的数值,GU为依据a.步骤并令预测控制器多步预测输出的预测公式中输入增量变量不为零时求得的数值。Yr为参考轨迹向量,yr(t+d+i)(i=1,2,…,p)为第t+d+i时刻的参考轨迹数值,p为预测步长,T为求转置算子。G、U具体表现为:
U=(Δuk(t),Δuk(t+1),…,Δuk(t+p-d-1))T
其中,Bi,0(i=1,2,…,p-d)为相应的输入增量变量的系数,Δuk(t+i)(i=0,1,…,p-d-1)为对应的第t+i时刻输入增量变量。
d.计算控制器的参数,具体是:
Δuk(t)=qT(Yr-Ym)
其中qT为控制器求取系数向量。
qT=(GTG+β2I)-1GT
其中β2、I为加权项系数。
本发明提出的一种炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法弥补了传统控制的不足,并有效地方便了控制器的设计,保证控制性能的提升,同时满足给定的生产性能指标。
本发明提出的控制技术可以有效减少理想工艺参数与实际工艺参数之间的误差,进一步弥补了传统控制器的不足,同时保证控制装置操作在最佳状态,使生产过程的工艺参数达到严格控制。
具体实施方式
以焦化加热炉辐射出口温度过程控制为例:
这里以焦化加热炉辐射出口温度过程控制作为例子加以描述。该过程是一个多变量耦合的过程,出口温度不仅受到燃料量流量的影响,同时也受炉膛压力,进风流量的影响。调节手段采用燃料量流量,其余的影响作为不确定因素。
(1)建立伴随矩阵解耦模型,具体方法是:
首先利用数据采集器采集炼油工业过程输入数据(燃料流量)和输出数据(加热炉辐射出口温度),建立输入输出模型如下:
y1(s)=G11(s)u1(s)+G12(s)u2(s)+…+G1N(s)uN(s)
y2(s)=G21(s)u1(s)+G22(s)u2(s)+…+G2N(s)uN(s)
.
.
.
yN(s)=GN1(s)u1(s)+GN2(s)u2(s)+…+GNN(s)uN(s)
其中,G11(s),G12(s),…,GNN(s)表示加热炉出口温度过程的传递函数方程,uk(s)、yk(s)(k=1,2,…,N)分别为燃料流量、加热炉辐射出口温度数据拉普拉斯变换;
然后定义三个变量Y(s)、G(s)、U(s)如下:
将以上过程的输入数据和输出数据表示为:
Y(s)=G(s)U(s)
进一步对上述方程选取伴随矩阵解耦阵为:
N(s)=adjG(s)
其中,N(s)是伴随矩阵解耦阵,adjG(s)为G(s)的伴随矩阵。
将上述伴随矩阵解耦阵与过程输入输出模型合并得到:
W(s)=G(s)·N(s)
=G(s)·adjG(s)
=diag det G(s)
其中,W(s)是得到的解耦过程模型,detG(s)为G(s)的行列式,diag det G(s)为以G(s)的行列式为元素的对角矩阵。
将上述解耦过程模型通过离散化处理成过程的离散表示方式:
A(z-1)yk(t)=z-(d+1)B(z-1)uk(t)
其中,A(z-1)、B(z-1)为输入变量和输出变量的多项式,d为过程的时间滞后,z-1为后移一步算子,z-(d+1)为后移d+1步算子,yk(t)、uk(t)(k=1,2,…,N)为分别与yk(s)、uk(s)(k=1,2,…,N)对应的离散化输出和输入变量。
(2)设计出口温度过程解耦预测控制器,具体方法是:
第一步:定义该预测控制器多步预测输出的预测公式为:
其中n、m分别是输出预测和输入预测的阶次,A1,i、B1,i为输出预测和输入预测的系数,Δ为差分算子,yk(t+1)为第t+1时刻的输出预测,yk(t+1-i)、Δuk(t-d-i)为与A1,i、B1,i对应的各时刻输出变量、输入增量变量,t为当前时刻,i为第i步预测时刻。
第二步:定义参考轨迹的组成为:
yr(t+d)=yk(t+d)
yr(t+d+j)=αyr(t+d+j-1)+(1-α)s
其中,yk(t+d)是第t+d时刻的输出预测,yr(t+d)、yr(t+d+j)、yr(t+d+j-1)分别是第t+d时刻、第t+d+j时刻、第t+d+j-1时刻的参考轨迹,α是参考轨迹的柔化系数,s是过程输出设定值。
第三步:定义输出预测和参考轨迹的向量形式为:
Y=Ym+GU
Yr=(yr(t+d+1),yr(t+d+2),…,yr(t+p))T
其中,Y为输出预测向量,Ym为依据第一步骤并令预测控制器多步预测输出的预测公式中输入增量变量为零时求得的数值,GU为依据第一步骤并令预测控制器多步预测输出的预测公式中输入增量变量不为零时求得的数值。Yr为参考轨迹向量,yr(t+d+i)(i=1,2,…,p)为第t+d+i时刻的参考轨迹数值,p为预测步长,T为求转置算子。GU具体表现为:
U=(Δuk(t),Δuk(t+1),…,Δuk(t+p-d-1))T
其中,Bi,0(i=1,2,…,p-d)为相应的输入增量变量的系数,Δuk(t+i)(i=0,1,…,p-d-1)为对应的第t+i时刻输入增量变量。
第四步:计算控制器的参数,具体是:
Δuk(t)=qT(Yr-Ym)
其中qT为控制器求取系数向量。
qT=(GTG+β2I)-1GT
其中β2、I为加权项系数。
炼油工业加热炉温度过程的伴随矩阵解耦预测控制方法专利购买费用说明
Q:办理专利转让的流程及所需资料
A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。
1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。
2:按规定缴纳著录项目变更手续费。
3:同时提交相关证明文件原件。
4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。
Q:专利著录项目变更费用如何缴交
A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式
Q:专利转让变更,多久能出结果
A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。
动态评分
0.0