专利转让平台_买专利_卖专利_中国高校专利技术交易-买卖发明专利上知查网

全部分类
全部分类
基于降低扰动带宽的摩擦力补偿及实现的方法及运动平台

基于降低扰动带宽的摩擦力补偿及实现的方法及运动平台

IPC分类号 : G05B11/42

申请号
CN201711377000.3
可选规格
  • 专利类型: 发明专利
  • 法律状态: 有权
  • 申请日: 2017-12-19
  • 公开号: CN108279561B
  • 公开日: 2018-07-13
  • 主分类号: G05B11/42
  • 专利权人: 广东工业大学

专利摘要

本发明提出了一种基于降低扰动带宽的摩擦力补偿自抗扰控制方法。为降低自抗扰控制器在运动平台速度过零点的扰动带宽,提出了一种降低系统刚度的设计,将弹性回复力ks减小,从而将摩擦力死区运动灵敏度低而难于消除的扰动,转化有限刚度弹性变形的扰动;本发明还给了刚柔耦合平台惯性分配指导,尽量降低附加惯性,使得核心平台惯性占主导,摩擦死区的控制规律近似为刚体运动规律;在运动过程,则将原来摩擦力为主要扰动,变成摩擦力与弹性变形的复合扰动,从而降低总扰动的带宽,有利于自抗扰控制器的总扰动消除。

权利要求

1.一种基于降低扰动带宽的摩擦力补偿及实现的方法,其特征在于,所述方法包括以下步骤:

S1.将运动平台的刚性平台设置为刚柔耦合平台;

所述运动平台包括:机座、直线导轨、刚柔耦合平台,

所述刚柔耦合平台包括:刚性框架、柔性铰链和核心运动平台;其中,所述核心运动平台通过所述柔性铰链与所述刚性框架连接;

S2.构建执行器和位移检测闭环系统,输入刚柔耦合平台的总惯性M,导轨支撑下的所述刚柔耦合平台弹性振动响应的等效刚度k、质量m和阻尼c,所述刚柔耦合平台的位移、速度、加速度分别用s、v、a表示,惯性影响系数用α表示,驱动力用f表示;

建立自抗扰控制算法,设置扩展观测器的预测的控制模型为a=f/[m+α(M-m)];

注重过程响应时,α取值为1;注重末端响应时,α取值为0;要兼顾两者时,α取值介于0-1之间;

其中,在刚体运动时,α=1,控制模型为a=f/[m+α(M-m)],扰动为摩擦力;

在摩擦死区时,平台产生弹性振动,此时控制模型应该为平台的刚度的弹性振动响应:ma+cv+ks=f,令α=0,控制模型为a=f/m,扰动为弹性变形回复力ks和阻尼力cv。

2.根据权利要求1所述的基于降低扰动带宽的摩擦力补偿及实现的方法,其特征在于,将所述刚柔耦合平台的弹性刚度降低,从而降低弹性变形回复力ks,柔性铰链制作为低阻尼的金属材料,近似取控制模型为a=f/m。

3.根据权利要求1或2所述的基于降低扰动带宽的摩擦力补偿及实现的方法,其特征在于,所述刚性框架采用轻质材料制作,核心运动平台的质量m占主要成分,m约等于M,因此摩擦死区的近似取控制模型为a=f/M,近似于刚体运动时的运动规律。

4.根据权利要求3所述的基于降低扰动带宽的摩擦力补偿及实现的方法,其特征在于,所述刚柔耦合平台的所述核心运动平台位于所述刚性框架的上部,所述核心运动平台和所述刚性框架通过所述柔性铰链连接。

5.根据权利要求3所述的基于降低扰动带宽的摩擦力补偿及实现的方法,其特征在于,所述刚柔耦合平台的所述核心运动平台与所述刚性框架之间的所述柔性铰链为对称布置。

6.一种运动平台,其特征在于,所述运动平台包括:机座、直线导轨、刚柔耦合平台,所述刚柔耦合平台包括:刚性框架、柔性铰链和核心运动平台;其中,所述核心运动平台通过所述柔性铰链与所述刚性框架连接;

所述刚柔耦合平台采用以下控制方法:

构建执行器和位移检测闭环系统,输入刚柔耦合平台的总惯性M,导轨支撑下的所述刚柔耦合平台弹性振动响应的等效刚度k、质量m和阻尼c,所述刚柔耦合平台的位移、速度、加速度分别用s、v、a表示,惯性影响系数用α表示,驱动力用f表示;

建立自抗扰控制算法,设置扩展观测器的预测模型为a=f/[m+α(M-m)];

注重过程响应时,α取值为1;注重末端响应时,α取值为0;要兼顾两者时,α取值介于0-1之间;

其中,在刚体运动时,α=1,控制模型为a=f/M,扰动为摩擦力;

在摩擦死区时,平台产生弹性振动,此时控制模型应该为平台的刚度的弹性振动响应:ma+cv+ks=f,令α=0,控制模型为a=f/m,扰动为弹性变形回复力ks和阻尼力cv。

7.根据权利要求6所述的运动平台,其特征在于,将所述刚柔耦合平台的弹性刚度降低,从而降低弹性变形回复力ks,柔性铰链制作为低阻尼的金属材料,近似取控制模型为a=f/m。

8.根据权利要求6或7所述的运动平台,其特征在于,所述刚性框架采用轻质材料制作,核心运动平台的质量m占主要成分,m约等于M,因此摩擦死区的近似取控制模型a=f/M,近似于刚体运动时的运动规律。

9.根据权利要求8所述的运动平台,其特征在于,所述刚柔耦合平台的所述核心运动平台位于所述刚性框架的上部,所述核心运动平台和所述刚性框架通过所述柔性铰链连接。

10.根据权利要求8所述的运动平台,其特征在于,所述刚柔耦合平台的所述核心运动平台与所述刚性框架之间的所述柔性铰链为对称布置。

说明书

技术领域

本发明涉及高速精密运动控制领域的技术领域,更具体地,涉及一基于降低自抗扰控制器扰动带宽摩擦力补偿及实现的方法。

背景技术

在高速精密运动控制领域,基于机械导轨的运动平台存在摩擦死区,精度只能达到微米级。在更高精度要求的场合,工业上需要采用气浮、磁悬浮和静压导轨等方式来降低甚至消除摩擦的影响,成本高,使用环境要求高,不适应用与量大面广的电子制造场合。然而,电子制造业得摩尔定律(当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍)对封装装备精度和速度都提出了苛刻的要求。传统的摩擦力补偿方案和控制方法难于以满足日益增长的高速精密运动控制的要求。科技人员都在努力寻求能够克服摩擦的控制方案,自抗扰控制算法是其中一种有效的方法,把模型误差和外界扰动统一考虑,实现了对摩擦力等扰动信息很好的抑制。在精度为微米级时,不用考虑摩擦死区补偿也能够快速准确地消除误差。然而在纳米(<0.1um)级时,在速度过零点存在动态误差。主要原因为在摩擦死区,虽然运动平台没有克服静摩擦产生刚体运动,但是驱动力的施加,运动平台产生微小的弹性变形,控制规律为a=(f-ks-cv)/m,与整体运动的估计a=f/M相比,弹性变形恢复力、阻尼力和附件惯性都成为扰动项,然而由于运动平台普遍刚性设计,刚度太大,造成自抗扰控制器的扩展观测器的预测模型精度变差而无法对扰动进行有效地消除。

韩京清先生1989年的《控制理论:模型论还是控制论》一文提出了线性化和带宽概念,线性化和带宽概念的引入给理论研究提供了全新的视角,同时降低了研究的难度。但是在工业上,带宽就是成本。高带宽虽然能使跟踪速度提高,但也带来很多问题:1)对执行机构的品质要求提高;2)激励了对象的高频动态使控制问题复杂化;3)闭环系统的稳定裕度下降,对相位滞后和时间延迟更敏感;4)对传感器噪声更敏。

发明内容

本发明为降低自抗扰控制器在运动平台速度过零点的扰动带宽,提出了一种降低系统刚度的设计,将弹性回复力ks减小,从而将摩擦力死区变形困难而难于消除的扰动,转化有限刚度弹性变形的扰动;在运动过程,则将原来摩擦力为主要扰动,变成摩擦力与弹性变形的复合扰动,从而降低总扰动的带宽,有利于自抗扰控制器的总扰动消除。

本发明采用的技术方案是如下。

一种基于降低自抗扰控制器扰动带宽摩擦力补偿及实现的方法,其特征在于,所述方法包括以下步骤:S1.将运动平台的刚性平台设置为刚柔耦合平台;所述运动平台包括:机座、直线导轨、刚柔耦合运动平台,所述刚柔耦合平台包括:刚性框架、柔性铰链和核心运动平台;其中,所述核心运动平台通过所述柔性铰链与所述刚性框架连接;S2.构建执行器和位移检测闭环系统,输入刚柔耦合运动平台的总惯性M,导轨支撑下的所述刚柔耦合运动平台弹性振动响应的等效刚度k、质量m和阻尼c,所述刚柔耦合运动平台的位移、速度、加速度分别用s,v,a表示,惯性影响系数用α表示,驱动力用f表示;建立自抗扰控制算法,设置扩展观测器的预测模型为a=f/[m+α(M-m)];注重过程响应时,α取值为1;注重末端响应时,α取值为0;要兼顾两者时,α取值介于0-1之间;其中,在刚体运动时,α=1,控制模型为a=f/[m+α(M-m)],扰动为摩擦力;在摩擦死区时,平台产生弹性振动,此时控制模型应该为平台的刚度的弹性振动响应:ma+cv+ks=f,令α=0,控制模型为a=f/m,扰动为弹性变形回复力ks阻尼力cv。

进一步,将所述平台的弹性刚度降低,从而降低弹性回恢复力ks,柔性铰链制作为低阻尼的金属材料,因此cv也可以视为扰动控制模型近似a=f/m。

进一步,所述框架采用轻质材料制作,核心平台的质量m占主要成分,m约等于M,因此摩擦死区的近似模型a=f/M,近似于刚体运动时的运动规律。

进一步,所述刚柔耦合平台的所述核心运动平台位于所述刚性框架的上部,所述核心运动平台和所述刚性框架通过所述柔性铰链连接。

进一步,所述刚柔耦合平台的所述核心运动平台与所述刚性框架之间的所述柔性铰链为对称布置。

一种运动平台,其特征在于,所述运动平台包括:机座、直线导轨、刚柔耦合运动平台,所述刚柔耦合平台包括:刚性框架、柔性铰链和核心运动平台;其中,所述核心运动平台通过所述柔性铰链与所述刚性框架连接;所述刚柔耦合平台采用以下控制方法:构建执行器和位移检测闭环系统,输入刚柔耦合运动平台的总惯性M,导轨支撑下的所述刚柔耦合运动平台弹性振动响应的等效刚度k、质量m和阻尼c,所述刚柔耦合运动平台的位移、速度、加速度分别用s,v,a表示,惯性影响系数用α表示,驱动力用f表示;建立自抗扰控制算法,设置扩展观测器的预测模型为a=f/[m+α(M-m)];注重过程响应时,α取值为1;注重末端响应时,α取值为0;要兼顾两者时,α取值介于0-1之间;其中,在刚体运动时,α=1,控制模型为a=f/M,扰动为摩擦力;在摩擦死区时,平台产生弹性振动,此时控制模型应该为平台的刚度的弹性振动响应:ma+cv+ks=f,令α=0,控制模型为a=f/m,扰动为弹性变形回复力ks阻尼力cv。

进一步,将所述平台的弹性刚度降低,从而降低弹性回恢复力ks,柔性铰链制作为低阻尼的金属材料,因此cv也可以视为扰动控制模型近似a=f/m。

进一步,所述框架采用轻质材料制作,平台的质量m占主要成分,m约等于M,因此摩擦死区的近似模型a=f/M,近似于刚体运动时的运动规律

进一步,所述刚柔耦合平台的所述核心运动平台位于所述刚性框架的上部,所述核心运动平台和所述刚性框架通过所述柔性铰链连接。

进一步,所述刚柔耦合平台的所述核心运动平台与所述刚性框架之间的所述柔性铰链为对称布置。

与现有技术相比,有益效果是:黑箱控制(无模型)时,观测器带宽要固有频率(扰动带宽)的10倍以上有预测模型时,观测器带宽只需固有频率3倍以上带宽越高,控制成本越高本发明降低平台固有频率,再配合预测模型,可将观测器带宽降低,而降低控制成本。

附图说明

图1为传统运动平台的刚体运动模型。

图2为考虑平台弹性变形的运动模型。

图3为本发明所提降低扰动带宽的单边柔性铰链方案。

图4为本发明所提降低扰动带宽的对称柔性铰链。

具体实施方式

附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。

传统PID控制直接取参考给定与输出反馈之差作为控制信号,导致出现响应快速性与超调性的矛盾出现。自抗扰控制器自PID控制器演变过来,采取了PID误差反馈控制的核心理念。

自抗扰控制器主要由三部分组成:跟踪微分器(tracking differentiator),扩展状态观测器(extended state observer)和非线性状态误差反馈控制律(nonlinear stateerror feedback law)。

跟踪微分器的作用是安排过渡过程,给出合理的控制信号,解决了响应速度与超调性之间的矛盾。扩展状态观测器用来解决模型未知部分和外部未知扰动综合对控制对象的影响。虽然叫做扩展状态观测器,但与普通的状态观测器不同。扩展状态观测器设计了一个扩展的状态量来跟踪模型未知部分和外部未知扰动的影响。然后给出控制量补偿这些扰动。将控制对象变为普通的积分串联型控制对象。设计扩展状态观测器的目的就是观测扩展出来的状态变量,用来估计未知扰动和控制对象未建模部分,实现动态系统的反馈线性化,将控制对象变为积分串联型。非线性误差反馈控制律给出被控对象的控制策略。

设计扩展状态光测器成为ADRC应用最重要的环节。当不完全不知道对象模型时,状态光测器的带宽需要设置在扰动带宽的10倍以上。有了比较准确的模型,可将观测器带宽仅需3倍扰动带宽即可。越高的观测器带宽,意味着采集频率的提高和伺服周期的缩短,成本高昂。

本发明所述的基于降低扰动带宽的摩擦力补偿自抗扰控制方法步骤包括:

1)将运动平台原有刚性平台改为如图2所示的刚柔耦合平台。

所述运动平台包括:机座、直线导轨、刚柔耦合运动平台。

所述刚柔耦合平台包括:刚性框架、柔性铰链和核心运动平台;核心运动平台通过柔性铰链与所述刚性框架连接。

优选地,如图3所示,该柔性耦合平台可以采用单边柔性铰链方案,核心运动平台位于刚性框架的上部,二者之间通过柔性铰链连接。采用单边柔性铰链方案的优点是成本较低。

由于单边柔性铰链在工作过程中会引起高度变化,对有高度要求时,此时还可以采用如图4所示的对称布置的柔性铰链方案,刚柔耦合平台的核心运动平台与刚性框架之间的柔性铰链为对称布置。采用对称布置的柔性铰链方案可以很好地避免了高度的变化。

2)构建执行器和位移检测闭环系统,输入刚柔耦合运动平台的总惯性M,导轨支撑下的所述刚柔耦合运动平台弹性振动响应的等效刚度k、质量m和阻尼c,所述刚柔耦合运动平台的位移、速度、加速度分别用s、v、a表示,惯性影响系数用α表示,驱动力用f表示;建立自抗扰控制算法,设置扩展观测器的预测模型为a=f/[m+α(M-m)]。

注重过程响应时,α取值为1;注重末端响应时,α取值为0;要兼顾两者时,α取值介于0-1之间。

其中,在刚体运动时,α=1,控制模型为a=f/[m+α(M-m)],扰动为摩擦力。

在摩擦死区时,平台产生弹性振动,此时控制模型应该为平台的刚度的弹性振动响应:ma+cv+ks=f,令α=0,控制模型为a=f/m,扰动为弹性变形回复力ks阻尼力cv。

所述框架采用轻质材料制作,平台的质量m占主要成分,m约等于M,因此摩擦死区的近似模型a=f/M,近似于刚体运动时的运动规律。

现有的刚性平台,刚度很大,扰动量需要非常高的控制带宽才能消除,实施成本非常高。本发明提出了降低扰动带宽的设计方案,降低刚度,从而降低了扰动的带宽,使得弹性恢复力ks项显著降低,即使在较小控制力下,也有位移输出,避免了传统刚度太大时,在小驱动力下位移输出为零,而导致扩展状态观测器不能工作的问题。本发明还给了刚柔耦合平台惯性分配指导,尽量降低附加惯性,使得核心平台惯性占主导,摩擦死区控制规律近似为刚体运动规律a=f/M,提高自抗扰的稳定性。

本发明所述的基于降低扰动带宽的摩擦力补偿自抗扰控制方法的工作原理如下:

将传统的刚体运动模型(图1)改成考虑平台弹性振动的模型(图2),在速度过零点(启动和停止),当驱动力不足于克服静摩擦时,平台产生弹性变形,此时的控制规律为a=(f-ks-cv)/m。由于现有平台设计刚性太大,变形在微米级以下。当平台的定位精度要求在微米级时,可以不考虑弹性变形。但如果定位精度时亚微米甚至纳米级,就必须考虑弹性变形的控制。自抗扰控制难于消除灵敏度很小的误差,因此将平台的刚度降低,用柔性铰链链接运动平台和滑块,降低平台刚度(图3)。由于单边柔性铰链在工作过程中会引起高度变化,对有高度要求时,还可以采用对称布置的柔性铰链(图4)。

显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

基于降低扰动带宽的摩擦力补偿及实现的方法及运动平台专利购买费用说明

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

动态评分

0.0

没有评分数据
没有评价数据
×

打开微信,点击底部的“发现”

使用“扫一扫”即可将网页分享至朋友圈

×
复制
用户中心
我的足迹
我的收藏

您的购物车还是空的,您可以

  • 微信公众号

    微信公众号
在线留言
返回顶部